Geometric Analysis: Problem Set 3

1. (Fundamental lemma of the Calculus of Variations). Let A be an open set in \mathbb{R}^{n} and ν a vector Radon measure on \mathbb{R}^{n} with values in \mathbb{R}^{m}. If

$$
\int_{\mathbb{R}^{n}} \varphi \cdot d \nu=0 \quad \forall \varphi \in C_{c}^{\infty}\left(A ; \mathbb{R}^{m}\right)
$$

then $|\nu|(A)=0$. In particular, if $u \in L_{l o c}^{1}\left(\mathbb{R}^{n}, \mathbb{R}^{m}\right)$ and

$$
\int_{\mathbb{R}^{n}} \varphi(x) \cdot u(x) d x=0 \quad \forall \varphi \in C_{c}^{\infty}\left(A ; \mathbb{R}^{m}\right)
$$

then $u=0$ a.e. on A.
(Hint: Use ε-regularization.)
2. Let μ be a Radon measure on \mathbb{R}^{n}, let $r>0$, and define the two functions $u, v: \mathbb{R}^{n} \rightarrow[0, \infty)$ as $u(x)=\mu(\bar{B}(x, r))$ and $v(x)=\mu(B(x, r))$ (where $B(x, r)$ is the open ball with center x and radius r). Show that u is upper semicontinuous and v is lower semicontinuous.
(Hint: Define μ_{x} by $\mu_{x}(E)=\mu(E+x)$ for $x \in \mathbb{R}^{n}$ and show that $\mu_{x} \stackrel{*}{\rightharpoonup} \mu_{x_{0}}$, when $x \rightarrow x_{0}$.)
3. Let μ_{i}, μ be vector Radon measures on \mathbb{R}^{n}. If $\mu_{i} \stackrel{*}{\rightharpoonup} \mu$ as $i \rightarrow \infty$ and $r_{k} \rightarrow \infty$ as $k \rightarrow \infty$, then

$$
\lim _{i \rightarrow \infty}\left|\mu_{i}\right|\left(B_{r_{k}}\right)=|\mu|\left(B_{r_{k}}\right) \forall k \in \mathbb{N} \Rightarrow\left|\mu_{i}\right| \stackrel{*}{\rightharpoonup}|\mu| .
$$

4. If $u \in L_{\text {loc }}^{1}\left(\mathbb{R}^{n}\right)$ and

$$
\int_{\mathbb{R}^{n}} u \nabla \varphi=0, \quad \forall \varphi \in C_{c}^{\infty}\left(\mathbb{R}^{n}\right)
$$

then there exists $c \in \mathbb{R}$ such that $u=c$ a.e. on \mathbb{R}^{n}.
5. If E is a set of locally finite perimeter, then $\mathbb{R}^{n} \backslash E$ is a set of locally finite perimeter and

$$
\mu_{\mathbb{R}^{n} \backslash E}=-\mu_{E}, \quad P(E)=P\left(\mathbb{R}^{n} \backslash E\right),
$$

where μ_{E} is the Gauss-Green measure of E.
6. If E and F are sets of locally finite perimeter, then $\mu_{E}=\mu_{F}$ on the bounded Borel sets of \mathbb{R}^{n} if and only if $|E \triangle F|=0$. When is $\mu_{E}=-\mu_{F}$ on the bounded Borel sets of \mathbb{R}^{n} ?

