Geometric Analysis: Problem Set 3

1. (Fundamental lemma of the Calculus of Variations). Let A be an open set in \mathbb{R}^n and ν a vector Radon measure on \mathbb{R}^n with values in \mathbb{R}^m . If

$$\int_{\mathbb{R}^n} \varphi \cdot d\nu = 0 \quad \forall \, \varphi \in C^\infty_c(A; \mathbb{R}^m),$$

then $|\nu|(A) = 0$. In particular, if $u \in L^1_{loc}(\mathbb{R}^n, \mathbb{R}^m)$ and

$$\int_{\mathbb{R}^n} \varphi(x) \cdot u(x) \, dx = 0 \quad \forall \, \varphi \in C_c^\infty(A; \mathbb{R}^m),$$

then u = 0 a.e. on A. (Hint: Use ε -regularization.)

- 2. Let μ be a Radon measure on \mathbb{R}^n , let r > 0, and define the two functions $u, v : \mathbb{R}^n \to [0, \infty)$ as $u(x) = \mu(\bar{B}(x, r))$ and $v(x) = \mu(B(x, r))$ (where B(x, r) is the open ball with center x and radius r). Show that u is upper semicontinuous and v is lower semicontinuous.
 - (Hint: Define μ_x by $\mu_x(E) = \mu(E+x)$ for $x \in \mathbb{R}^n$ and show that $\mu_x \stackrel{*}{\rightharpoonup} \mu_{x_0}$, when $x \to x_0$.)
- 3. Let μ_i, μ be vector Radon measures on \mathbb{R}^n . If $\mu_i \stackrel{*}{\rightharpoonup} \mu$ as $i \to \infty$ and $r_k \to \infty$ as $k \to \infty$, then

$$\lim_{i \to \infty} |\mu_i|(B_{r_k}) = |\mu|(B_{r_k}) \ \forall k \in \mathbb{N} \ \Rightarrow \ |\mu_i| \stackrel{*}{\rightharpoonup} |\mu|.$$

4. If $u \in L^1_{loc}(\mathbb{R}^n)$ and

$$\int_{\mathbb{R}^n} u \, \nabla \varphi = 0, \quad \forall \, \varphi \in C^\infty_c(\mathbb{R}^n),$$

then there exists $c \in \mathbb{R}$ such that u = c a.e. on \mathbb{R}^n .

5. If E is a set of locally finite perimeter, then $\mathbb{R}^n \setminus E$ is a set of locally finite perimeter and

$$\mu_{\mathbb{R}^n \setminus E} = -\mu_E, \ P(E) = P(\mathbb{R}^n \setminus E),$$

where μ_E is the Gauss-Green measure of E.

6. If E and F are sets of locally finite perimeter, then $\mu_E = \mu_F$ on the bounded Borel sets of \mathbb{R}^n if and only if $|E \triangle F| = 0$. When is $\mu_E = -\mu_F$ on the bounded Borel sets of \mathbb{R}^n ?