Geometric Analysis: Problem Set 6

1. Let μ be a Radon measure on \mathbb{R}^n . If $\{u_i\}_{i \in \mathbb{N}} \subset L^p(\mathbb{R}^n, \mu)$, where 1 , satisfies

$$\sup_{i\in\mathbb{N}}\|u_i\|_{L^p(\mathbb{R}^n,\mu)}<\infty,$$

then there exist a sequence $i(k) \to \infty$ as $k \to \infty$ and $u \in L^p(\mathbb{R}^n, \mu)$ such that

$$\lim_{k \to \infty} \int_{\mathbb{R}^n} \varphi \, u_{i(k)} \, d\mu = \int_{\mathbb{R}^n} \varphi \, u \, d\mu$$

for every $\varphi \in L^{p'}(\mathbb{R}^n, \mu)$, where p' = 1 for $p = \infty$ and p' = p/(p-1) for 1 .

Hint: By the compactness criterion for signed Radon measures, there exists a signed Radon measure ν such that $\mu_{i(k)} = u_{i(k)} \mu \stackrel{*}{\rightharpoonup} \nu$. Show that ν is absolutely continuous w.r.t. μ and that, in fact, $\nu = u \mu$ for $u \in L^p(\mathbb{R}^n, \mu)$.

2. Show that if $u \in L^1_{loc}(\mathbb{R}^n)$, then $u_{\varepsilon} \in C^{\infty}(\mathbb{R}^n)$, spt $u_{\varepsilon} \subset$ spt $u + \varepsilon B$,

$$\nabla u_{\varepsilon}(x) = \int_{\mathbb{R}^n} \nabla \rho_{\varepsilon}(x-y) \, u(y) \, dy, \text{ for } x \in \mathbb{R}^n,$$

and $u_{\varepsilon}(E)$ is contained in the closed convex hull of u(E) for every $E \subset \mathbb{R}^n$. Moreover, show that $u_{\varepsilon} \to u$ in $L^1_{loc}(\mathbb{R}^n)$, $u_{\varepsilon}(x) \to u(x)$ at Lebesgue points x of u, and, for $0 < R < \infty$,

$$\|u_{\varepsilon}\|_{L^1(B_R)} \le \|u\|_{L^1(B_{R+\varepsilon})}.$$

3. Let $x \in \mathbb{R}^n$, $r_0 > 0$ and $\{C_r\}_{0 < r < r_0}$ be a family of Borel sets such that, for some $\beta > \alpha > 0$, $B(x, \alpha r) \subset C_r \subset B(x, \beta r)$ for $0 < r < r_0$ (for example, $C_r = x + rA$, A open and bounded, $0 \in A$). Show that if $E \subset \mathbb{R}^n$ is a Lebesgue measurable set and $t \in \{0, 1\}$, then $x \in E^{(t)}$ if and only if

$$\lim_{r \to 0+} \frac{|E \cap C_r|}{|C_r|} = t$$

Also show that the equivalence does not hold for 0 < t < 1.

4. Let the function $u \in L^1_{loc}(\mathbb{R}^n)$, the set $A \subset \mathbb{R}^n$ be open and connected, and let

$$\int_{\mathbb{R}^n} u \, \nabla \varphi = 0 \quad \text{for all} \quad \varphi \in C_c^\infty(A).$$

Show that there is a constant $c \in \mathbb{R}$ such that u = c a.e. on A.