Differential geometry (104.358)
 Exercise sheet for 03.5.2018

23. Calculate the induced metric of the catenoid

$$
X:(u, v) \mapsto X(u, v):=O+e_{1} \cosh (u) \cos (v)+e_{2} \cosh (u) \sin (v)+e_{3} u
$$

24. Show that a surface $X: \mathbb{R}^{2} \supseteq U \rightarrow \mathcal{E}^{3}$ is conformally parametrised if and only if the parametrisation preserves angles.
25. Consider the sphere $S^{2} \subset \mathbb{R}^{3}$ with radius 1 and centred at the origin. Let $N=(0,0,1) \in S^{2}$ be the north pole of the sphere. For every point $(u, v, 0)$ in the $e_{1} e_{2}$-plane draw a line through $(u, v, 0)$ and N. This line cuts the sphere in the north pole and another point $\Pi(u, v)$ and thus defines a map

$$
\begin{aligned}
\Pi: \mathbb{R}^{2} & \rightarrow S^{2} \subset \mathbb{R}^{3} \\
(u, v) & \mapsto \Pi(u, v)
\end{aligned}
$$

Calculate the map Π. What is the image of Π ? What is $\lim _{u \rightarrow \infty} \Pi(u, v)$?
After a choice of origin $O \in \mathcal{E}^{3}$, define Π a map X to \mathcal{E}^{3},

$$
\begin{aligned}
X: \mathbb{R}^{2} & \rightarrow \mathcal{E}^{3} \\
(u, v) & \mapsto O+\Pi(u, v) .
\end{aligned}
$$

Convince yourself that X is a regular parametrisation of the sphere without the north pole. Is the parametrisation conformal?
What is the image of a line in \mathbb{R}^{2} under X ? What is the image of a circle in \mathbb{R}^{2} with centre at the origin under X ?
Note: the inverse function Π^{-1} is called stereographic projection.
26. Let $r>0$ and define a parametrisation of the Möbius strip by

$$
\begin{aligned}
X: \mathbb{R}^{2} & \rightarrow \mathcal{E}^{3} \\
(u, v) & \mapsto O+\left(e_{1} \cos 2 u+e_{2} \sin 2 u\right)(r+v \cos u)+e_{3} v \sin u
\end{aligned}
$$

Calculate the Gauss map N of X along $v=0$, i.e., calculate $N(u, 0)$.
Prove that $X(u+\pi, 0)=X(u, 0)$ but $N(u+\pi, 0)=-N(u, 0)$.
27. Let

$$
\begin{aligned}
X: & \mathbb{R}^{2} \supseteq U \rightarrow \mathcal{E}^{3}, \\
& (u, v) \mapsto O+e_{1} u+e_{2} v+e_{3} z(u, v),
\end{aligned}
$$

where $z: U \rightarrow \mathbb{R}$ is smooth.
Calculate the Gauss map and the shape operator of X.
Now let $\left(u_{0}, v_{0}\right)$ be a stationary point of the function z. What does the shape operator and the Gauss curvature look like at this point?

