Differential geometry (104.358)
 Exercise sheet for 07.6.2018

38. Prove: In curvature line coordinates (u, v) the Codazzi equations have the form

$$
0=\kappa_{1 v}+\frac{E_{v}}{2 E}\left(\kappa_{1}-\kappa_{2}\right)=\kappa_{2 u}-\frac{G_{u}}{2 G}\left(\kappa_{1}-\kappa_{2}\right) .
$$

39. Suppose that a surface $O+e_{1} x+e_{2} y+e_{3} z$ is implicitly defined through $F(x, y, z)=0$ where $F: \mathbb{R}^{3} \rightarrow \mathbb{R}$ is a smooth function satisfying $\operatorname{grad} F \neq 0$ wherever $F(x, y, z)=0$. A parametrisation $X:(u, v) \mapsto X(u, v)$ of this surface therefore satisfies $F \circ(X-O)=0$. Let $C: t \mapsto C(t)$ be a curve on this surface, i.e., $F \circ(C-O)=0$.
Show that the natural ribbon of C is given by (C, N) where

$$
N= \pm \frac{\operatorname{grad} F \circ(C-O)}{|\operatorname{grad} F \circ(C-O)|}
$$

Use this to prove that the two curves

$$
C_{ \pm}: t \mapsto C_{ \pm}(t)=O+e_{1}+e_{2} t \pm e_{3} t
$$

on the one-sheeted Hyperboloid

$$
\left\{O+e_{1} x+e_{2} y+e_{3} z \in \mathcal{E}^{3} \mid x^{2}+y^{2}-z^{2}-1=0\right\}
$$

are asymptotic and pre-geodesic lines, but not curvature lines.
40. Prove Joachimsthal's theorem:

Suppose that two surfaces intersect along a curve and that the curve is a curvature line for one of the two surfaces; then it is a curvature line for the other surface if and only if the two surfaces intersect at a constant angle.
41. Find a curvature line reparametrisation of the helicoid:

$$
X(u, v)=O+e_{1} \sinh u \cos v+e_{2} \sinh u \sin v+e_{3} h v .
$$

42. Prove Euler's theorem:

The normal curvatures κ_{n} at a point of a surface satisfy

$$
\kappa_{n}=\kappa^{+} \cos ^{2} \theta+\kappa^{-} \sin ^{2} \theta,
$$

where $\kappa^{ \pm}$are the principal curvatures and θ is the angle between the tangent direction of $\kappa_{n}(\theta)$ and the curvature direction of κ^{+}.
$\underline{\text { Hint: }}$ fix $(u, v) \in M$ and use a basis $\left(e_{1}, e_{2}\right)$ of \mathbb{R}^{2} that is orthonormal for $\left.\mathrm{I}\right|_{(u, v)}$ and diagonalises $\left.\mathbb{I}\right|_{(u, v)}$.
43. Fix a point $X(u, v)$ on a parametrised surface and assume that this is not a flat point. Prove that an asymptotic line can pass through $X(u, v)$ in two, one or no directions depending on the sign of the Gauss curvature $K(u, v)$.

