Differential geometry (104.358)
 Exercise sheet for 12.4.2018

9. Let (X, N) be a ribbon for the curve $X: \mathbb{R} \supseteq \mathcal{I} \rightarrow \mathcal{E}^{3}$ and let $\tilde{N}:=N \cos \phi+B \sin \phi$, where $\phi: \mathcal{I} \rightarrow \mathbb{R}$ is differentiable and $B=T \times N$.
Show that (X, \tilde{N}) is a ribbon and calculate how the curvatures κ_{n}, κ_{g} and the torsion τ change when switching from (X, N) to (X, \tilde{N}).
10. Let (X, N) be a ribbon for the curve $X: \mathbb{R} \supseteq \mathcal{I} \rightarrow \mathcal{E}^{3}$ and let $\tilde{X}:=X \circ \psi$ be a reparametrisation of X, i.e., $\psi: \mathcal{I} \rightarrow \mathcal{I}$ is a bijective differentiable function with $\psi^{\prime} \neq 0$.
(a) Show that (\tilde{X}, \tilde{N}) with $\tilde{N}=N \circ \psi$ is a ribbon.
(b) How does the curvatures κ_{n}, κ_{g} and torsion τ change between (X, N) and (\tilde{X}, \tilde{N}) ?
11. Let $X: \mathbb{R} \supseteq \mathcal{I} \rightarrow \mathcal{E}^{3}$ be a regular parametrisation of a line, i.e., $X^{\prime} \times X^{\prime \prime}=0$, and let F be a suitable frame for X.
Show that $\kappa_{n}=0=\kappa_{g}$ and find a unit normal field N so that $\tau=1$.
12. Consider the parametrised curve

$$
\begin{aligned}
X: \mathbb{R} & \rightarrow \mathcal{E}^{3}, \\
t & \mapsto O+e_{1} t+e_{2} t^{2}+e_{3} \frac{2 t^{3}}{3}
\end{aligned}
$$

Calculate the arc length of X.
Find a normal field N for X and calculate at $t=0$ the normal curvature, geodesic curvature and torsion by using the identities

$$
\kappa_{n}=-\left(N^{\prime}, T\right), \quad \kappa_{g}=-\left(T^{\prime}, B\right), \quad \tau=\left(N^{\prime}, B\right)
$$

13. Prove:

An arc length parametrised curve X in \mathcal{E}^{3} lies in a plane if and only if there exists a suitable frame such that $\kappa_{g}=0=\tau$.
Is the same statement true for $\kappa_{n}=0=\tau$ and for $\kappa_{n}=0=\kappa_{g}$?

