Differential geometry (104.358)
 Exercise sheet for 14.6.2018

44. Let X be a surface and suppose that along a curve $t \mapsto C(t)=X(u(t), v(t))$ the surface is tangent to a fixed plane, i.e., the tangent planes of X along C are all the same.
Show that the points of the curve C are parabolic or flat points of X, and thus the Gauss curvature of X vanishes at these points.
45. Find all geodesics on a unit sphere with given initial point and velocity.

Hint: Do not parametrise the sphere.
46. Let X_{1} and X_{2} be two surfaces that intersect along a curve C. Suppose that the Gauss maps of the two surfaces are linearly independent along C.

Show that C is a pre-geodesic line of both X_{1} and X_{2} if and only if C is a line segment.
47. Prove that $K=-\frac{(\sqrt{G})_{r r}}{\sqrt{G}}$ in geodesic polar coordinates (r, θ).
48. Compute the geodesic equations in geodesic polar coordinates (r, θ).

