## Differential geometry (104.358) <br> Exercise sheet for 17.5.2018

27. Calculate the Gauss map and shape operator of the catenoid

$$
X:(u, v) \mapsto X(u, v):=O+e_{1} \cosh u \cos v+e_{2} \cosh u \sin v+e_{3} u
$$

Show that the catenoid is a minimal surface, i.e., the mean curvature $H$ is zero.
28. Assume a surface

$$
\begin{aligned}
X: & \mathbb{R}^{2} \supseteq U \rightarrow \mathcal{E}^{3} \\
(u, v) & \mapsto X(u, v)=O+e_{1} x+e_{2} y+e_{3} z
\end{aligned}
$$

is implicitly defined through an equation $F(x, y, z)=0$ with a smooth map $F: \mathbb{R}^{3} \rightarrow \mathbb{R}$ with $\operatorname{grad} F \neq 0$ whenever $F(x, y, z)=0$. We can equivalently define the surface through the equation $F \circ(X-O)=0$. Show that the Gauss map is given by

$$
N= \pm \frac{(\operatorname{grad} F) \circ(X-O)}{\|(\operatorname{grad} F) \circ(X-O)\|}
$$

(grad denotes the gradient, i.e., the vector of partial derivatives).
29. Calculate the Gauss map and the shape operator of the helicoid:

$$
(r, v) \mapsto X(r, v)=O+e_{1} r \cos v+e_{2} r \sin v+e_{3} v .
$$

Determine also the mean curvature, the two principal curvatures and the curvature directions of $X$.
30. Investigate how the first and second fundamental forms of a surface change under reparametrisation and Euclidean motions.
31. Show that the circular cone with its apex removed,

$$
\left\{O+e_{1} x+e_{2} y+e_{3} z \mid x^{2}+y^{2}=z^{2}, z>0\right\}
$$

admits an isometric parametrisation.
Hint: Find a simple parametrisation and then do an appropriate reparametrisation of the domain.

