Differential geometry (104.358)
 Exercise sheet for 19.4.2018

14. (a) Let $Y: \mathbb{R} \supseteq \mathcal{I} \rightarrow \mathcal{E}^{2} \subset \mathcal{E}^{3}$ be a plane curve. Then $\frac{Y^{\prime}(t)}{\left\|Y^{\prime}(t)\right\|}=e_{1} \cos (\psi(t))+e_{2} \sin (\psi(t))$ for some function $\psi: \mathcal{I} \rightarrow \mathbb{R}$.
Convince yourself that

$$
\kappa(t):=\frac{\operatorname{det}\left(Y^{\prime}(t), Y^{\prime \prime}(t)\right)}{\left\|Y^{\prime}(t)\right\|^{3}}=\frac{\psi^{\prime}(t)}{\left\|Y^{\prime}(t)\right\|}
$$

and thus κ measures the change in direction of the tangent vector.
(b) Let $X: \mathbb{R} \supseteq \mathcal{I} \rightarrow \mathcal{E}^{3}$ be an arc length parametrised curve in \mathcal{E}^{3}, let N be any normal field and fix $t_{0} \in \mathcal{I}$. Project X orthogonally to the affine plane through $X\left(t_{0}\right)$, that is spanned by $X^{\prime}\left(t_{0}\right)$ und $N\left(t_{0}\right)$. Identify the plane with \mathcal{E}^{2} to obtain a planar curve $\tilde{X}: \mathcal{I} \rightarrow \mathcal{E}^{2}$, the orthogonal projection of X.
Show that

$$
\left|\kappa\left(t_{0}\right)\right|=\left|\frac{\operatorname{det}\left(\tilde{X}^{\prime}\left(t_{0}\right), \tilde{X}^{\prime \prime}\left(t_{0}\right)\right)}{\left\|\tilde{X}^{\prime}\left(t_{0}\right)\right\|^{3}}\right|=\left|\left\langle T^{\prime}\left(t_{0}\right), N\left(t_{0}\right)\right\rangle\right|=\left|\kappa_{n}\left(t_{0}\right)\right| .
$$

15. Let $X: \mathbb{R} \supseteq \mathcal{I} \rightarrow \mathcal{E}^{3}$ be a plane curve and N a unit normal field that is tangent to this plane. Show that N is parallel for the normal connection. What do the other parallel normal fields along X look like?
16. Let $X: \mathbb{R} \supseteq \mathcal{I} \rightarrow \mathcal{E}^{3}$ be a curve in \mathcal{E}^{3}. Prove:
(a) Any two parallel frames of X differ by a constant rotation in the normal plane.
(b) Let N be a parallel normal field along X. Then a normal field \tilde{N} is parallel if and only if it makes a constant angle with N.
17. Show that a curve in \mathcal{E}^{3} lies on a sphere or plane if and only if the curvatures κ_{g} and κ_{n} of a parallel frame satisfy a linear equation in \mathbb{R}^{2}. How can the radius of the sphere be read from this equation?
18. Let

$$
\phi(t)=\left(\begin{array}{ccc}
0 & -\kappa_{n}(t) & \kappa_{g}(t) \\
\kappa_{n}(t) & 0 & -\tau(t) \\
-\kappa_{g}(t) & \tau(t) & 0
\end{array}\right)
$$

where $\kappa_{n}, \kappa_{g}, \tau: \mathbb{R} \supset \mathcal{I} \rightarrow \mathbb{R}$.
Show that

$$
F(t):=\sum_{i=0}^{\infty} F_{i}(t)=\lim _{k \rightarrow \infty} \sum_{i=0}^{k} F_{i}(t)
$$

with $F_{0}(t)=i d_{\mathbb{R}^{3}}$ and

$$
F_{i}(t)=\int_{t_{0}}^{t} F_{i-1}(\tilde{t}) \phi(\tilde{t}) \mathrm{d} \tilde{t} \quad \text { for } \quad i>0
$$

is a suitable frame for an arc length parametrised curve X, whose curvatures and torsion are κ_{n}, κ_{g} and τ. You may assume that $F(t)$ and $F^{\prime}(t)$ exist and that

$$
F^{\prime}(t)=\sum_{i=0}^{\infty} F_{i}^{\prime}(t)
$$

holds. How does F simplify if ϕ is constant?

