Differential geometry (104.358) Exercise sheet for 21.6.2018

- 49. Use the implicit mapping theorem to show directly that an implicitly defined manifold has local parametrisations.
- 50. Let $F_1, F_2 : \mathcal{E}^3 \ni U \to \mathbb{R}$ with $(\operatorname{grad} F_1 \times \operatorname{grad} F_2)(p) \neq 0$ for all $p \in U$. Prove that the equations

$$F_1(p) = F_2(p) = 0$$

defines a 1-dimensional manifold in \mathcal{E}^3 . Hence, show that the conic sections

$$C_{\alpha} = \{ O + e_1 x + e_2 y + e_3 z \, | \, x^2 + y^2 = z^2, \, x \cos \alpha + z \sin \alpha = d \},\$$

where $\alpha \in \mathbb{R}$ and $d \neq 0$, are 1-dimensional submanifolds of \mathcal{E}^3 .

- 51. Show that the graph $\{O + e_1x + e_2y + e_3f(x, y)\}$ of a smooth function $f : \mathbb{R}^2 \to \mathbb{R}$ is a 2-dimensional submanifold of \mathcal{E}^3 .
- 52. Suppose that $U \subset \mathcal{E}^n$ is an open set. Show that U is a submanifold of \mathcal{E}^n and compute its tangent space.
- 53. Show that the general linear group $Gl(n) = \{A \in End(\mathbb{R}^n) : det(A) \neq 0\}$ is an n^2 -dimensional submanifold of $End(\mathbb{R}^n)$.

Show that the special linear group $Sl(n) = \{A \in End(\mathbb{R}^n) : det(A) = 1\}$ is a $(n^2 - 1)$ -dimensional submanifold of $End(\mathbb{R}^n)$.