Differential Geometry (104.358)
 Exercise sheet for 22.3.2018

4. Consider again the following curves:
(a) Neile's semicubical parabola, $\quad p: \mathbb{R} \rightarrow \mathcal{E}^{3}, t \mapsto O+e_{1} t^{3}+e_{2} t^{2}$.
(b) The graph of the absolute value function, $\quad b: \mathbb{R} \rightarrow \mathcal{E}^{3}, t \mapsto O+e_{1} t+e_{2}|t|$.
(c) The straight line, $\quad g: \mathbb{R} \rightarrow \mathcal{E}^{3}, t \mapsto O+e_{1} t^{3}$.

For which of the three maps is there a diffeomorphism $\psi: \mathbb{R} \rightarrow \mathbb{R}$ so that $\gamma \circ \psi: \mathbb{R} \rightarrow \mathcal{E}^{3}$, $\gamma \in\{p, b, g\}$, is regular?
For which of the three maps is there a bijective, differentiable map $\phi: \mathbb{R} \rightarrow \mathbb{R}$ so that $\tilde{X}=X \circ\left(\phi^{-1}\right): \mathbb{R} \rightarrow \mathcal{E}^{3}, X \in\{p, b, g\}$, is regular? (And for which is there none?)
5. Find a regular parametrisation for the conic section

$$
C_{\alpha, d}=\left\{O+e_{1} x+e_{2} y+e_{3} z \in \mathcal{E}^{3} \mid x^{2}+y^{2}=z^{2}, x \cos \alpha+z \sin \alpha=d\right\}
$$

$\alpha \in\left[0, \frac{\pi}{2}\right], d \neq 0$.
Hint: Separate the cases $\alpha<\frac{\pi}{4}, \alpha=\frac{\pi}{4}$ und $\alpha>\frac{\pi}{4}$.
6. Prove: A map

$$
\begin{aligned}
X: \mathbb{R} \supseteq \mathcal{I} & \rightarrow \mathcal{E}^{n}, \\
t & \mapsto X(t),
\end{aligned}
$$

with $X^{\prime} \neq 0$ parametrises a line or a line segment if $X^{\prime}(t)$ and $X^{\prime \prime}(t)$ are linearly dependent. In this case, what sort of reparametrisations $\tilde{X}(\tilde{t})$ of $X(t)$ satisfy $\tilde{X}^{\prime \prime}=0$?
7. Convince yourself that the arc length

$$
s(t)=\int_{t_{0}}^{t}\left\|X^{\prime}(\tilde{t})\right\| \mathrm{d} \tilde{t}
$$

of a curve $t \mapsto X(t)$ is invariant under reparametrisation.
8. Consider the curve $X(t)=O+e_{1} x(t)+e_{2} y(t)+e_{3} z(t)$ defined implicitly by the equations

$$
\left(\frac{x(t)}{a}\right)^{2}+\left(\frac{y(t)}{b}\right)^{2}+\left(\frac{z(t)}{c}\right)^{2}=1, \quad a \sqrt{b^{2}-c^{2}} z(t)=c \sqrt{a^{2}-b^{2}} x(t)
$$

with $a>b>c>0$.
(a) Which two surfaces intersect to give the curve?
(b) Find a parametrisation of the curve.
(c) Calculate the arc length and an arc length parametrisation of the curve.
(d) What does the curve look like?

