Differential geometry (104.358)
 Exercise sheet for 26.4.2018

18. (a) Convince yourself that the Frenet condition $\forall t \in \mathcal{I}: X^{\prime}(t) \times X^{\prime \prime}(t) \neq 0$ of a curve $X: \mathcal{I} \rightarrow \mathcal{E}^{3}$ is invariant under reparametrisation.
(b) Let $X: \mathbb{R} \supseteq \mathcal{I} \rightarrow \mathcal{E}^{3}$ be a Frenet curve. Show that (X, N) is a geodesic ribbon $\left(\kappa_{g}=0\right)$ if and only if $\pm N$ is the principal normal field.
19. Let $X: \mathbb{R} \supseteq \mathcal{I} \rightarrow \mathcal{E}^{3}$ be an arc length parametrised Frenet curve. The Darboux vector field is given by

$$
D:=\tau T+\kappa B .
$$

Show that the Frenet equations can be written as

$$
T^{\prime}=D \times T, \quad N^{\prime}=D \times N, \quad B^{\prime}=D \times B
$$

20. Let $\gamma: \mathbb{R} \supseteq \mathcal{I} \rightarrow \mathcal{E}^{3}$ be a Frenet curve. Show that (T, N, B) with

$$
T=\frac{\gamma^{\prime}}{\left\|\gamma^{\prime}\right\|}, \quad B=\frac{\gamma^{\prime} \times \gamma^{\prime \prime}}{\left\|\gamma^{\prime} \times \gamma^{\prime \prime}\right\|}, \quad N=B \times T
$$

is the Frenet frame of the curve.
21. Express the curvature and torsion of a Frenet curve in terms of κ_{n} and κ_{g} of a parallel frame and vice versa.
22. Show that the ellipsoid with two points removed

$$
E=\left\{O+e_{1} x+e_{2} y+e_{3} z \in \mathcal{E}^{3}\left|\left(\frac{x}{a}\right)^{2}+\left(\frac{y}{b}\right)^{2}+\left(\frac{z}{c}\right)^{2}=1,|z|<c\right\}, \quad a>b>c\right.
$$

is a surface by finding a regular parametrisation.
23. Show that the torus

$$
T^{2}:=\left\{O+e_{1} x+e_{2} y+e_{3} z \in \mathcal{E}^{3} \mid\left(\sqrt{x^{2}+y^{2}}-R\right)^{2}+z^{2}=r^{2}\right\}
$$

with $0<r<R$ is a surface.
Hint: How is the torus made up of circles? Use parametrisations of circles to find a parametrisation of the torus.

