## Differential Geometry (104.358) <br> Exercise sheet for 15.3.2018

1. Consider the following maps:

$$
\begin{array}{rlrl}
a: & \mathbb{R} & \rightarrow \mathbb{R}^{2} & b: \mathbb{R} \\
t & \rightarrow \mathbb{R}^{2} \\
t & \mapsto\binom{t}{t^{2}+1} & & \mapsto\binom{t^{2}}{t^{4}+1} \\
c: \mathbb{R} & \rightarrow \mathbb{R}^{2} & d: \mathbb{R} \rightarrow \mathbb{R}^{2} \\
t & \mapsto\binom{t^{3}}{t^{6}+1} & t & \mapsto\binom{\operatorname{sign}(t) \sqrt{|t|}}{|t|+1} \\
e: \mathbb{R} & \rightarrow \mathbb{R}^{2} & f: \mathbb{R} \rightarrow \mathbb{R}^{2} \\
t & \mapsto\binom{\sinh ^{2}(t)}{\cosh ^{2}(t)} & t & \mapsto\binom{\sin (t)}{\sin ^{2}(t)+1}
\end{array}
$$

For $d$ : $\operatorname{sign}$ is the sign function: $\operatorname{sign}(t)=1$ for $t>0, \operatorname{sign}(0)=0, \operatorname{sign}(t)=-1$ for $t<0$. Thus, $t=\operatorname{sign}(t)|t|$.
We consider $\mathbb{R}^{2}$ with the standard euclidean norm

$$
\begin{aligned}
&\|\cdot\|: \mathbb{R}^{2} \\
& \rightarrow \mathbb{R} \\
&(x, y) \mapsto\|(x, y)\|=\sqrt{x^{2}+y^{2}}
\end{aligned}
$$

Investigate:
(a) differentiability
(b) regularity: where is $\left\|X^{\prime}\right\| \neq 0, X \in\{a, b, c, d, e, f\}$ ?
(c) injectivity
of the above maps.
For which pairs of the above maps $X_{1}, X_{2} \in\{a, b, c, d, e, f\}$ is there a diffeomorphism $\psi$ : $\mathbb{R} \rightarrow \mathbb{R}$ such that $X_{1}=X_{2} \circ \psi$ ? Which maps have the same image?
2. Consider the catenary:

$$
X: \mathbb{R} \rightarrow \mathbb{R}^{2}, \quad t \mapsto\binom{\cosh (t)}{t}
$$

Calculate the first derivative vector $X^{\prime}$ (tangent vector), its norm $\left\|X^{\prime}\right\|$ and the normalised derivative vector $T=\frac{X^{\prime}}{\left\|X^{\prime}\right\|}$. What are the asymptotic directions

$$
\lim _{t \rightarrow \pm \infty} T(t) \quad ?
$$

Through what angle does $T$ rotate in the interval $(-\infty, 0)$ and $(-\infty, \infty)$ ?
Calculate also the curvature $\kappa(t):=\frac{\operatorname{det}\left(X^{\prime}(t) X^{\prime \prime}(t)\right)}{\left\|X^{\prime}(t)\right\|^{3}}$.
3. Consider
(a) Neile's semicubical parabola, $\quad p: \mathbb{R} \rightarrow \mathbb{R}^{2}, t \mapsto\binom{t^{3}}{t^{2}}$.
(b) The graph of the absolute value function, $\quad b: \mathbb{R} \rightarrow \mathbb{R}^{2}, t \mapsto\binom{t}{|t|}$.
(c) The straight line, $g: \mathbb{R} \rightarrow \mathbb{R}^{2}, t \mapsto\binom{t^{3}}{0}$.

Investigate the differentiability and regularity (is $\left\|X^{\prime}(0)\right\| \neq 0$ for $X \in\{p, b, g\}$ ) of the three maps at $t=0$. Now remove the "problematic" point $t=0$ from the domain $\mathbb{R}=$ $\mathbb{R}_{-} \cup\{0\} \cup \mathbb{R}_{+}$, to obtain in each case two differentiable, regular maps $p_{ \pm}=\left.p\right|_{\mathbb{R}_{ \pm}}, b_{ \pm}=\left.b\right|_{\mathbb{R}_{ \pm}}$, $g_{ \pm}=\left.\right|_{\mathbb{R}_{ \pm}}$with domain the positive real numbers $\mathbb{R}_{+}$or the negative real numbers $\mathbb{R}_{-}$. Calculate the normalised tangent vectors $T=\frac{X^{\prime}}{\left\|X^{\prime}\right\|}$ of these maps and their limits as $t \rightarrow 0$, i.e.,

$$
\lim _{\epsilon \rightarrow 0} \frac{X^{\prime}{ }_{ \pm}( \pm \epsilon)}{\left\|X^{\prime}( \pm \epsilon)\right\|}, \quad X \in\{p, b, g\}
$$

What conclusions can be made by looking at the images of these maps at $t=0$ ?

