Differential Geometry (104.358)
 Exercise sheet for 04.4.2019

14. Let $X: \mathbb{R} \supseteq \mathcal{I} \rightarrow \mathcal{E}^{3}$ be a plane curve and N a unit normal field that is tangent to this plane. Show that N is parallel for the normal connection. What do the other parallel normal fields along X look like?
15. Let $X: \mathbb{R} \supseteq \mathcal{I} \rightarrow \mathcal{E}^{3}$ be a curve in \mathcal{E}^{3}. Prove:
(a) Any two parallel frames of X differ by a constant rotation in the normal plane.
(b) Let N be a parallel normal field along X. Then a normal field \tilde{N} is parallel if and only if it makes a constant angle with N.
16. Suppose that $X: I \rightarrow \mathcal{E}^{3}$ is a Frenet curve. Show that the curvature and torsion of X are given by

$$
\kappa=\frac{\left|X^{\prime} \times X^{\prime \prime}\right|}{\left|X^{\prime}\right|^{3}} \quad \text { and } \quad \tau=\frac{\operatorname{det}\left(X^{\prime}, X^{\prime \prime}, X^{\prime \prime \prime}\right)}{\left|X^{\prime} \times X^{\prime \prime}\right|^{2}}
$$

[Hint: for the torsion one can use the scalar triple product: $\langle a,(b \times c)\rangle=\operatorname{det}(a, b, c)$.]
17. Suppose that $X: I \rightarrow \mathcal{E}^{3}$ is a Frenet curve lying on a sphere of radius $r>0$ with centre $O \in \mathcal{E}^{3}$ and assume that the torsion τ of X is always positive. Show that

$$
\begin{equation*}
\left(\frac{1}{\kappa}\right)^{2}+\left(\left(\frac{1}{\kappa}\right)^{\prime} \frac{1}{\tau}\right)^{2} \equiv r^{2} \tag{1}
\end{equation*}
$$

[Hint: Show that $X-O=-N \frac{1}{\kappa}-B\left(\frac{1}{\kappa}\right)^{\prime} \frac{1}{\tau}$ by differentiating the condition $|X-O|^{2}=r^{2}$ three times. Here (T, N, B) is the Frenet frame.]
Is the converse true: if (1) is satisfied for some $r>0$, does X have to lie on a sphere?
18. Express the curvature and torsion of a Frenet curve in terms of κ_{n} and κ_{g} of a parallel frame and vice versa.

