Differential Geometry (104.358) Exercise sheet for 06.6.2019

40. Prove Euler's theorem:

The normal curvatures κ_n at a point of a surface satisfy

 $\kappa_n = \kappa^+ \cos^2 \theta + \kappa^- \sin^2 \theta,$

where κ^{\pm} are the principal curvatures and θ is the angle between the tangent direction of $\kappa_n(\theta)$ and the curvature direction of κ^+ .

<u>Hint</u>: fix $(u,v) \in M$ and use a basis (e_1,e_2) of \mathbb{R}^2 that is orthonormal for $I|_{(u,v)}$ and diagonalises $II|_{(u,v)}$.

- 41. Fix a point X(u, v) on a parametrised surface and assume that this is not a flat point. Prove that an asymptotic line can pass through X(u, v) in two, one or no directions depending on the sign of the Gauss curvature K(u, v).
- 42. Let X_1 and X_2 be two surfaces that intersect along a curve C. Suppose that the Gauss maps of the two surfaces are linearly independent along C.

Show that C is a pre-geodesic line of both X_1 and X_2 if and only if C is a line segment.

43. Let X be a surface and suppose that along a curve $t \mapsto C(t) = X(u(t), v(t))$ the surface is tangent to a fixed plane, i.e., the tangent planes of X along C are all the same. Show that the Cauca Curveture vanishes along the curve C

Show that the Gauss Curvature vanishes along the curve C.