Differential Geometry (104.358)
 Exercise sheet for 11.4.2019

19. Show that the ellipsoid with two points removed

$$
E=\left\{O+e_{1} x+e_{2} y+e_{3} z \in \mathcal{E}^{3}\left|\left(\frac{x}{a}\right)^{2}+\left(\frac{y}{b}\right)^{2}+\left(\frac{z}{c}\right)^{2}=1,|z|<c\right\}, \quad a>b>c\right.
$$

is a surface by finding a regular parametrisation.
20. Show that the torus

$$
T^{2}:=\left\{O+e_{1} x+e_{2} y+e_{3} z \in \mathcal{E}^{3} \mid\left(\sqrt{x^{2}+y^{2}}-R\right)^{2}+z^{2}=r^{2}\right\}
$$

with $0<r<R$ is a surface.
Hint: How is the torus made up of circles? Use parametrisations of circles to find a parametrisation of the torus.
21. Show that the circular cone with its apex removed,

$$
\left\{O+e_{1} x+e_{2} y+e_{3} z \mid x^{2}+y^{2}=z^{2}, z>0\right\}
$$

admits an isometric parametrisation.
22. Consider the sphere $S^{2} \subset \mathbb{R}^{3}$ with radius 1 and centred at the origin. Let $n=(0,0,1) \in S^{2}$ be the north pole of the sphere. For every point $(u, v, 0)$ in the $e_{1} e_{2}$-plane draw a line through $(u, v, 0)$ and n. This line cuts the sphere in the north pole and another point $\Pi(u, v)$ and thus defines a map

$$
\begin{aligned}
\Pi: \mathbb{R}^{2} & \rightarrow S^{2} \subset \mathbb{R}^{3} \\
(u, v) & \mapsto \Pi(u, v)
\end{aligned}
$$

Calculate the map Π. What is the image of Π ? What is $\lim _{u \rightarrow \infty} \Pi(u, v)$?
After a choice of origin $O \in \mathcal{E}^{3}$, define a map X to \mathcal{E}^{3},

$$
\begin{aligned}
X: \mathbb{R}^{2} & \rightarrow \mathcal{E}^{3} \\
(u, v) & \mapsto O+\Pi(u, v)
\end{aligned}
$$

Convince yourself that X is a regular parametrisation of the unit sphere centred at O without the north pole. Is the parametrisation conformal?
What is the image of a line in \mathbb{R}^{2} under X ? What is the image of a circle in \mathbb{R}^{2} with centre at the origin under X ?
Note: the inverse function Π^{-1} is called stereographic projection.
23. Let $r>0$ and define a parametrisation of the Möbius strip by

$$
\begin{aligned}
X: \mathbb{R}^{2} & \rightarrow \mathcal{E}^{3} \\
(u, v) & \mapsto O+\left(e_{1} \cos 2 u+e_{2} \sin 2 u\right)(r+v \cos u)+e_{3} v \sin u
\end{aligned}
$$

Calculate the Gauss map N of X along $v=0$, i.e., calculate $N(u, 0)$.
Show that $X(u+\pi, 0)=X(u, 0)$ but $N(u+\pi, 0)=-N(u, 0)$.

