Differential Geometry (104.358) Exercise sheet for 14.03.2019

1. Consider the following maps:

$$a: \mathbb{R} \to \mathbb{R}^{2} \qquad b: \mathbb{R} \to \mathbb{R}^{2} \\ t \mapsto \begin{pmatrix} t \\ t^{2} + 1 \end{pmatrix} \qquad t \mapsto \begin{pmatrix} t^{2} \\ t^{4} + 1 \end{pmatrix} \\ c: \mathbb{R} \to \mathbb{R}^{2} \qquad d: \mathbb{R} \to \mathbb{R}^{2} \\ t \mapsto \begin{pmatrix} t^{3} \\ t^{6} + 1 \end{pmatrix} \qquad t \mapsto \begin{pmatrix} sign(t)\sqrt{|t|} \\ |t| + 1 \end{pmatrix} \\ c \mapsto \mathbb{R}^{2} \qquad t \mapsto \begin{pmatrix} sign(t)\sqrt{|t|} \\ |t| + 1 \end{pmatrix} \\ c \mapsto \mathbb{R}^{2} \qquad t \mapsto \begin{pmatrix} sign(t)\sqrt{|t|} \\ |t| + 1 \end{pmatrix} \\ c \mapsto \mathbb{R}^{2} \qquad t \mapsto (s \mapsto \mathbb{R}^{2}) \\ c \mapsto \mathbb{R}^{2} \qquad t \mapsto (s \mapsto \mathbb{R}^{2}) \\ c \mapsto \mathbb{R}^{2} \qquad t \mapsto \mathbb{R}^{2} \qquad t \mapsto \mathbb{R}^{2} \\ c \mapsto \mathbb{R}^{2} \qquad t \mapsto \mathbb{R}^{2} \qquad t \mapsto \mathbb{R}^{2} \\ c \mapsto \mathbb{R}^{2} \qquad t \mapsto \mathbb{R}^{2} \qquad t \mapsto \mathbb{R}^{2}$$

$$e: \mathbb{R} \to \mathbb{R}^2 \qquad f: \mathbb{R} \to \mathbb{R}^2$$
$$t \mapsto \begin{pmatrix} \sinh(t) \\ \cosh^2(t) \end{pmatrix} \qquad t \mapsto \begin{pmatrix} \sin(t) \\ \sin^2(t) + 1 \end{pmatrix}$$

For d: sign is the sign function: sign(t) = 1 for t > 0, sign(0) = 0, sign(t) = -1 for t < 0. Thus, t = sign(t)|t|.

We consider \mathbb{R}^2 with the standard euclidean norm

$$\begin{aligned} \|\cdot\| &: \mathbb{R}^2 \to \mathbb{R}, \\ (x,y) \mapsto \|(x,y)\| &= \sqrt{x^2 + y^2}. \end{aligned}$$

Investigate:

- (a) differentiability
- (b) regularity: where is $||X'|| \neq 0, X \in \{a, b, c, d, e, f\}$?
- (c) injectivity

of the above maps.

For which pairs of the above maps $X_1, X_2 \in \{a, b, c, d, e, f\}$ is there a diffeomorphism ψ : $\mathbb{R} \to \mathbb{R}$ such that $X_1 = X_2 \circ \psi$? Which maps have the same image?

2. Consider the catenary:

$$X: \mathbb{R} \to \mathbb{R}^2, \quad t \mapsto \begin{pmatrix} \cosh(t) \\ t \end{pmatrix}.$$

Calculate the first derivative vector X' (tangent vector), its norm ||X'|| and the normalised derivative vector $T = \frac{X'}{||X'||}$. What are the asymptotic directions

$$\lim_{t \to \pm \infty} T(t) \quad ?$$

Through what angle does T rotate in the interval $(-\infty, 0)$ and $(-\infty, \infty)$? Calculate also the curvature $\kappa(t) := \frac{\det(X'(t)X''(t))}{\|X'(t)\|^3}$.

- 3. Consider
 - (a) Neile's semicubical parabola, $p: \mathbb{R} \to \mathbb{R}^2, t \mapsto \begin{pmatrix} t^3 \\ t^2 \end{pmatrix}$.

- (b) The graph of the absolute value function, $b: \mathbb{R} \to \mathbb{R}^2, t \mapsto \begin{pmatrix} t \\ |t| \end{pmatrix}$.
- (c) The straight line, $g: \mathbb{R} \to \mathbb{R}^2, t \mapsto \begin{pmatrix} t^3 \\ 0 \end{pmatrix}.$

Investigate the differentiability and regularity (is $||X'(0)|| \neq 0$ for $X \in \{p, b, g\}$) of the three maps at t = 0. Now remove the "problematic" point t = 0 from the domain $\mathbb{R} = \mathbb{R}_- \cup \{0\} \cup \mathbb{R}_+$, to obtain in each case two differentiable, regular maps $p_{\pm} = p|_{\mathbb{R}_{\pm}}, b_{\pm} = b|_{\mathbb{R}_{\pm}}, g_{\pm} = |_{\mathbb{R}_{\pm}}$ with domain the positive real numbers \mathbb{R}_+ or the negative real numbers \mathbb{R}_- . Calculate the normalised tangent vectors $T = \frac{X'}{||X'||}$ of these maps and their limits as $t \to 0$, i.e.,

$$\lim_{\epsilon \to 0} \frac{X'_{\pm}(\pm \epsilon)}{\|X'_{\pm}(\pm \epsilon)\|}, \qquad X \in \{p, b, g\}.$$

What conclusions can be made by looking at the images of these maps at t = 0?