Differential Geometry (104.358)
 Exercise sheet for 16.5.2019

32. Let Σ denote the matrix representation of the shape operator. Prove that the partial covariant derivatives, $\nabla_{\frac{\partial}{\partial u}} S$ and $\nabla_{\frac{\partial}{\partial v}} S$ have matrix representations

$$
\Sigma_{u}+\left[\Gamma_{1}, \Sigma\right] \quad \text { and } \quad \Sigma_{v}+\left[\Gamma_{2}, \Sigma\right],
$$

where [.,.] denotes the usual commutator of matrices. Derive an expression of the Codazzi equation in terms of these.
33. Prove that for a conformally parametrised surface the Gauss equation reads

$$
K=-\frac{1}{2 E} \Delta \ln E
$$

34. Suppose that $X: M \rightarrow \mathcal{E}^{3}$ is a surface with

$$
\mathrm{I}=d u^{2}+2 \cos \theta d u d v+d v^{2} \quad \text { and } \quad \mathrm{II}=2 \sin \theta d u d v
$$

for some smooth function $\theta: M \rightarrow \mathbb{R}$.
Determine the Gauss curvature of X and then use the Gauss equation to derive a second order differential equation for θ.
35. Let $F=\left(X_{u}, X_{v}, N\right)$ be an adpated frame for the surface $X: M \rightarrow \mathbb{R}^{3}$. Show that

$$
\left(\begin{array}{ccc}
E & F & 0 \\
F & G & 0 \\
0 & 0 & 1
\end{array}\right) F^{-1} F_{u} \quad \text { and } \quad\left(\begin{array}{ccc}
E & F & 0 \\
F & G & 0 \\
0 & 0 & 1
\end{array}\right) F^{-1} F_{v}
$$

are skew-symmetric matrices if and only if

$$
I=\left(\begin{array}{ll}
E & F \\
F & G
\end{array}\right)
$$

is constant.

