Differential Geometry (104.358)
 Exercise sheet for 23.5.2019

36. Show that if a minimal surface $(H \equiv 0)$ admits an isometric parametrisation then it is part of a plane.
37. Suppose that a surface $O+e_{1} x+e_{2} y+e_{3} z$ is implicitly defined through $F(x, y, z)=0$ where $F: \mathbb{R}^{3} \rightarrow \mathbb{R}$ is a smooth function satisfying $\operatorname{grad} F \neq 0$ wherever $F(x, y, z)=0$. A parametrisation $X:(u, v) \mapsto X(u, v)$ of this surface therefore satisfies $F \circ(X-O)=0$. Let $C: t \mapsto C(t)$ be a curve on this surface, i.e., $F \circ(C-O)=0$.
Show that the natural ribbon of C is given by (C, N) where

$$
N= \pm \frac{\operatorname{grad} F \circ(C-O)}{|\operatorname{grad} F \circ(C-O)|}
$$

Use this to prove that the two curves

$$
C_{ \pm}: t \mapsto C_{ \pm}(t)=O+e_{1}+e_{2} t \pm e_{3} t
$$

on the one-sheeted Hyperboloid

$$
\left\{O+e_{1} x+e_{2} y+e_{3} z \in \mathcal{E}^{3} \mid x^{2}+y^{2}-z^{2}-1=0\right\}
$$

are asymptotic and pre-geodesic lines, but not curvature lines.
38. Prove that for a curvature line parametrisation, the Codazzi equations have the form

$$
0=\kappa_{v}^{+}+\frac{E_{v}}{2 E}\left(\kappa^{+}-\kappa^{-}\right)=\kappa_{u}^{-}-\frac{G_{u}}{2 G}\left(\kappa^{+}-\kappa^{-}\right) .
$$

39. Find a curvature line reparametrisation of the helicoid:

$$
X(u, v)=O+e_{1} \sinh u \cos v+e_{2} \sinh u \sin v+e_{3} v
$$

