Differential Geometry (104.358)
 Exercise sheet for 27.6.2019

44. Using the geodesic equations, find all geodesics on the circular cylinder

$$
X(u, v)=O+e_{1} \cos u+e_{2} \sin u+e_{3} v
$$

with given initial point and velocity.
45. Let

$$
X(u, v)=O+e_{1} r(u) \cos v+e_{2} r(u) \sin v+e_{3} h(u)
$$

be a surface of revolution. Prove that:
a) if a circle of latitude $t \mapsto X(u, t)$ is geodesic, then $r^{\prime}(u) \equiv 0$;
b) if $r^{\prime 2}+h^{\prime 2} \equiv 1$, then the profile curves $t \mapsto X(t, v)$ are geodesic.
46. Compute the geodesic equations in geodesic polar coordinates (r, θ).
47. Prove that $K=-\frac{(\sqrt{G})_{r r}}{\sqrt{G}}$ in geodesic polar coordinates (r, θ).

Question to be handed in (written neatly or typed) on 27/06/19:

a) Without using an explicit parametrisation, find all geodesics on a sphere with given initial point and velocity.
b) Consider the parametrisation of the unit sphere

$$
X(u, v)=O+e_{1} \cos u \cos v+e_{2} \cos u \sin v+e_{3} \sin u
$$

Compute the geodesic equations of X. (You don't need to solve these equations!)
c) Show that if a geodesic on a surface lies in a fixed plane, then it must either be part of a straight line or a curvature line of the surface.
d) Show that if all of the geodesics on a surface are plane curves, then the surface must be part of a plane or sphere.

