Problem 1. Let $\alpha: I=\left[t_{0}, t_{1}\right] \rightarrow \mathbb{R}^{3}, t \mapsto \alpha(t)$ be a regular curve and $\beta: J=\left[0, L_{\alpha}\right] \rightarrow \mathbb{R}^{3}, s \mapsto \beta(s)$ be a reparametrization of α by arc length s,

$$
s(t)=\int_{t_{0}}^{t}\left\|\alpha^{\prime}(t)\right\| d t, \quad t \in\left[t_{0}, t_{1}\right]
$$

- Show that the curvature of α at $t \in I$ can be computed as

$$
\kappa(t)=\frac{\left\|\alpha^{\prime}(t) \times \alpha^{\prime \prime}(t)\right\|}{\left\|\alpha^{\prime}(t)\right\|^{3}}
$$

- Show that the signed curvature of a planar curve $\alpha(t)=(x(t), y(t))$ is given as

$$
\kappa(t)=\frac{x^{\prime}(t) y^{\prime \prime}(t)-x^{\prime \prime}(t) y^{\prime}(t)}{\left(\left(x^{\prime}(t)\right)^{2}+\left(y^{\prime}(t)\right)^{2}\right)^{3 / 2}}
$$

Hints: (i) By definition $\kappa(t)=\kappa_{\beta}(s(t))=\|\ddot{\beta}(s(t))\|$. To expand this expression you will need formulas for $s^{\prime}(t)$ and $s^{\prime \prime}(t)$. (ii) At some point it will be helpful to recall the formula for the area of a parallelogram.

Problem 2. Given the parametrized curve

$$
\gamma(s)=\left(a \cos \frac{s}{c}, a \sin \frac{s}{c}, b \frac{s}{c}\right), \quad s \in \mathbb{R}
$$

where $a>0, b>0$, and $c^{2}=a^{2}+b^{2}$.

- Show that s is the arc length parameter.
- Compute the curvature of γ.
- Show that the lines spanned by the principal normal $\mathbf{e}_{\mathbf{2}}(s)$ and passing through $\gamma(s)$ meet the z-axis under a constant angle.
- Show that the tangent lines of γ form a constant angle with the z-axis.

Problem 3. The catenary curve is defined as $\gamma(t)=(t, \cosh t), \in \mathbb{R}$

- Show that the signed curvature of γ is

$$
\kappa(t)=\frac{1}{\cosh ^{2} t}
$$

- Show that the evolute of γ is

$$
\gamma^{*}(t)=(t-\sinh t \cosh t, 2 \cosh t)
$$

Problem 4. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a differentiable function.

- Show that $\gamma: \mathbb{R} \rightarrow \mathbb{R}^{2}, t \mapsto\binom{t}{f(t)}$ defines a regular curve.
- Derive a closed formula for the curvature κ of γ.
- Let $f=\frac{1}{2} a t^{2}, a \neq 0$. Compute the curvature of γ at $t=0$.

Problem 5. Let $\mathbf{x}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3},(u, v) \mapsto\left(u, v, u^{2}+2 v^{2}\right)$

- Show that \mathbf{x} defines a regular surface.
- Compute the normal curvature κ_{n} in direction $\mathbf{x}_{u}+\mathbf{x}_{v}$ at $(0,0)$.

Problems due October 19, 2017.

$\#$ of completed problems	grade
$<50 \%$	5
$50-59 \%$	4
$60-74 \%$	3
$75-84 \%$	2
$>84 \%$	1

