	WS 2017
Geometry Processing	Assignment 1

Problem 1. Let $\alpha : I = [t_0, t_1] \to \mathbb{R}^3$, $t \mapsto \alpha(t)$ be a regular curve and $\beta : J = [0, L_{\alpha}] \to \mathbb{R}^3$, $s \mapsto \beta(s)$ be a reparametrization of α by arc length s,

$$s(t) = \int_{t_0}^t \|\alpha'(t)\| dt, \qquad t \in [t_0, t_1].$$

• Show that the curvature of α at $t \in I$ can be computed as

$$\kappa(t) = \frac{\|\alpha'(t) \times \alpha''(t)\|}{\|\alpha'(t)\|^3}$$

• Show that the signed curvature of a planar curve $\alpha(t) = (x(t), y(t))$ is given as

$$\kappa(t) = \frac{x'(t)y''(t) - x''(t)y'(t)}{\left((x'(t))^2 + (y'(t))^2\right)^{3/2}}$$

Hints: (i) By definition $\kappa(t) = \kappa_{\beta}(s(t)) = \|\ddot{\beta}(s(t))\|$. To expand this expression you will need formulas for s'(t) and s''(t). (ii) At some point it will be helpful to recall the formula for the area of a parallelogram.

Problem 2. Given the parametrized curve

$$\gamma(s) = \left(a\cos\frac{s}{c}, a\sin\frac{s}{c}, b\frac{s}{c}\right), \qquad s \in \mathbb{R},$$

where a > 0, b > 0, and $c^2 = a^2 + b^2$.

- Show that s is the arc length parameter.
- Compute the curvature of γ .
- Show that the lines spanned by the principal normal $\mathbf{e}_2(s)$ and passing through $\gamma(s)$ meet the z-axis under a constant angle.
- Show that the tangent lines of γ form a constant angle with the z-axis.

Problem 3. The catenary curve is defined as $\gamma(t) = (t, \cosh t), \in \mathbb{R}$

• Show that the signed curvature of γ is

$$\kappa(t) = \frac{1}{\cosh^2 t}.$$

• Show that the evolute of γ is

$$\gamma^*(t) = (t - \sinh t \cosh t, 2 \cosh t)$$

Problem 4. Let $f : \mathbb{R} \to \mathbb{R}$ be a differentiable function.

- Show that $\gamma: \mathbb{R} \to \mathbb{R}^2, t \mapsto \begin{pmatrix} t \\ f(t) \end{pmatrix}$ defines a regular curve.
- Derive a closed formula for the curvature κ of $\gamma.$
- Let $f = \frac{1}{2}at^2$, $a \neq 0$. Compute the curvature of γ at t = 0.

Problem 5. Let $\mathbf{x} : \mathbb{R}^2 \to \mathbb{R}^3, (u, v) \mapsto (u, v, u^2 + 2v^2)$

 $\bullet\,$ Show that ${\bf x}$ defines a regular surface.

> 84%

• Compute the normal curvature κ_n in direction $\mathbf{x}_u + \mathbf{x}_v$ at (0, 0).

# of completed problems	grade
< 50%	5
50-59%	4
60 - 74%	3
75 - 84%	2

1

Problems due October 19, 2017.