Problem 16. Prove Euler's polyhedral formula

$$
F-E+V=2
$$

for a spherical polyhedron with F faces, E edges, and V vertices. Hint: area formula for spherical polygons.

Problem 17. Write a Matlab program to compute the surface Φ enveloped by the 1-parameter family of planes

$$
U(t, \mathbf{x})=\mathbf{u}(t)^{T} \mathbf{x}-u_{0}(t), \quad t \in[1 / 4, \pi-1 / 4]
$$

with

$$
\mathbf{u}(t)=\left(\begin{array}{c}
\cos t \cos \frac{(t-\pi)^{2}}{2 \pi} \\
\cos t \sin \frac{(t-\pi)^{2}}{2 \pi} \\
\sin t
\end{array}\right) \quad \text { and } \quad u_{0}(t)=2 \cos t+\frac{3}{2}
$$

Find the regression curve \mathbf{c} and display Φ as a dense set of rulings along \mathbf{c}.

Problem 18. We consider the torus

$$
\mathbf{x}(u, v)=\left(\begin{array}{c}
(a+r \cos u) \cos v \\
(a+r \cos u) \sin v \\
r \sin u
\end{array}\right), \quad(u, v) \in[0,2 \pi] \times[0,2 \pi]
$$

with positive a, r and $a>r$. Compute the tangent developable along surface curves $\mathbf{c}(u(t), v(t))$ with

1. $(u(t), v(t))=(\pi / 4, t)$
2. $(u(t), v(t))=(t, 0)$
3. $(u(t), v(t))=(t, t)$

It is sufficient to visualize rulings of the tangent developable, i.e., conjugate tangents along the curve \mathbf{c}.

Problems due January 25, 2018.

