Name:

105.593 Einführung in Stochastische Prozesse und Zeitreihenanalyse
 Vorlesung, 2013S, 2.0h March 2015 Hubalek/Scherrer

(Dauer 90 Minutes, Permissible materials: one handwritten sheet, format A4, plus a non programmable calculator)

Unless you made a special arrangement for the oral exam you will receive an e-mail with your results of the written exam and the information for registering for the oral exam.

Bsp.	Max.	Punkte
1	5	
2	5	
3	5	
4	5	
\sum	20	

1. Consider the ARMA(1,1) process $x_{t}=a x_{t-1}+\epsilon_{t}+b \epsilon_{t-1},|a|<1,|b|<1,\left(\epsilon_{t}\right) \sim \mathrm{WN}\left(\sigma^{2}\right)$.
(a) Show that $x_{t}=y_{t}+b y_{t-1}$, where $\left(y_{t}\right)$ is an $\operatorname{AR}(1)$ process satisfying $y_{t}=a y_{t-1}+\epsilon_{t}$.
(b) Show that $\left(x_{t}\right)$ has the following representation as an MA (∞) process:

$$
x_{t}=\epsilon_{t}+\sum_{j \geq 0}(a+b) a^{j} \epsilon_{t-1-j}
$$

(c) Show that the autocovariance function of $\left(x_{t}\right)$ is given by:

$$
\gamma(k)= \begin{cases}\frac{\sigma^{2}}{1-a^{2}}\left(1+2 a b+b^{2}\right) & \text { for } k=0 \\ \frac{\sigma^{2}}{1-a^{2}} a^{k-1}(a+b)(1+a b) & \text { for } k>0 \\ \gamma(-k) & \text { for } k<0\end{cases}
$$

(d) Show that $\left(x_{t}\right)$ is a white noise Process when $a+b=0$ or $a b=-1$.
2. Suppose we are given an $\operatorname{ARMA}(2,1)$ process $x_{t}=a_{1} x_{t-1}+a_{2} x_{t-2}+\epsilon_{t}+b_{1} \epsilon_{t-1},\left(\epsilon_{t}\right) \sim$ $\mathrm{WN}\left(\sigma^{2}\right)$. Suppose the conditions for stability and minimum phase are satisfied and thus we have $\mathbb{H}_{x}(t)=\mathbb{H}_{\epsilon}(t)$. We consider the h-step prediction \hat{x}_{t+h} for x_{t+h} from the infinite past $\left(x_{s}, s \leq t\right)$ and the corresponding prediction error $\hat{u}_{t+h}=x_{t+h}-\hat{x}_{t+h}$. Proof the following claims:
(a) 1-step prediction $(h=1)$:

$$
\begin{aligned}
\hat{x}_{t+1} & =a_{1} x_{t}+a_{2} x_{t-1}+b_{1} \epsilon_{t} \\
\hat{u}_{t+1} & =\epsilon_{t+1} \\
\mathbf{E} \hat{u}_{t+1}^{2} & =\sigma^{2}
\end{aligned}
$$

(b) 2-step prediction $(h=2)$:

$$
\begin{aligned}
\hat{x}_{t+2} & =a_{1} \hat{x}_{t+1}+a_{2} x_{t} \\
\hat{u}_{t+2} & =\epsilon_{t+2}+\left(a_{1}+b_{1}\right) \epsilon_{t+1} \\
\mathbf{E} \hat{u}_{t+2}^{2} & =\sigma^{2}\left(1+\left(a_{1}+b_{1}\right)^{2}\right)
\end{aligned}
$$

(c) 3-step prediction $(h=3)$:

$$
\begin{aligned}
\hat{x}_{t+3} & =a_{1} \hat{x}_{t+2}+a_{2} \hat{x}_{t+1} \\
\hat{u}_{t+3} & =\epsilon_{t+3}+\left(a_{1}+b_{1}\right) \epsilon_{t+2}+\left(a_{1}^{2}+a_{1} b_{1}+a_{2}\right) \epsilon_{t+1} \\
\mathbf{E} \hat{u}_{t+3}^{2} & =\sigma^{2}\left(1+\left(a_{1}+b_{1}\right)^{2}+\left(a_{1}^{2}+a_{1} b_{1}+a_{2}\right)^{2}\right)
\end{aligned}
$$

3. Suppose you are given a Markov chain $\left(X_{n}\right)_{n \geq 0}$ with state space $I=\{1,2,3,4,5\}$ and transition probabilities that are specified in the graph below, where p is an arbitrary real number from the interval $(0,1)$.

(a) Choose (yes, it's up to you!) an initial distribution λ and write it down. Furthermore, write down the transition matrix P.
(b) Let $H=\inf \left\{n \geq 0: X_{n}=1\right\}$ and $h_{i}=\mathbb{P}_{i}[H<\infty]$ for $i \in I$. Determine h_{1}, \ldots, h_{5}. No details required, just the result. We use the same notation as in the lecture and our book (Norris).
(c) Let $K=\inf \left\{n \geq 0: X_{n} \in\{3,5\}\right\}$. Calculate $\mathbb{E}[K]$ using the initial distribution chosen above. No details required, just the result.
(d) Investigate the convergence respectively calculate the limit of the series

$$
\sum_{n=0}^{\infty} p_{i i}^{(n)}, \quad i \in I
$$

Notation as in the lecture and book.
(e) Which states are recurrent, which transient? Provide a short, but mathematically sound argument. Writing down or rewriting the definition of recurrence and transience yields no point!
4. Suppose we are given a probability space (Ω, \mathcal{F}, P) carrying a Brownian motion $(W(t), t \geq$ $0)$. Furthermore let $(\mathcal{F}(t), t \geq 0)$ denote the natural filtration of W.
(a) Furthermore, we are given an integer $k \geq 1$ and a process f with

$$
f(t)=W(k) \cdot 1_{[k, k+1)}(t), \quad t \geq 0
$$

Show respectively argue, that $f \in M_{\text {step }}^{2}$.
(b) Compute the stochastic integral $I(f)$ as explicit as possible.
(c) Suppose we are given an integer $n \geq 2$ and a process g with

$$
g(t)=\sum_{j=1}^{n-1} W(j) \cdot 1_{[j, j+1)}(t) \quad t \geq 0
$$

Compute expectation and variance of the random variable

$$
X=\int_{0}^{\infty} g(t) d W(t)
$$

(d) Show that the process Y with

$$
Y(t)=W(t)^{n}, \quad t \geq 0
$$

is an Ito-Process and determine the initial value $Y(0)$ and the processes a and b in the corresponding representation

$$
Y(t)=Y(0)+\int_{0}^{t} a(s) d s+\int_{0}^{t} b(s) d W(s), \quad t \geq 0
$$

You need not and should not show the required measurability and integrability conditions for $Y(0), a$, and b here.
(e) (Continuation) Show that the process Z with

$$
Z(t)=\cos (Y(t)), \quad t \geq 0
$$

is an Ito process and compute the initial value $Z(0)$ and the processes A and B from the corresponding representation

$$
Z(t)=Z(0)+\int_{0}^{t} A(s) d s+\int_{0}^{t} B(s) d W(s), \quad t \geq 0
$$

You need not and should not show the required measurability and integrability conditions for $Z(0), A$, and B here.

