2. Problem Set for the Course Mathematical Finance 2: Continuous-Time Models

March 21, 2012

3. Problem: Representation as stochastic integral

Let $W = \{W_t\}_{t \in [0,T]}$ with $W_t = (W_t^{(1)}, \dots, W_t^{(n)})^{\top}$ denote a standard *n*-dimensional Brownian motion up to time T > 0 and let $\sigma = (\sigma_1, \dots, \sigma_n) \in \mathbb{R}^n$. In every one of the cases

- (a) $F = \int_0^T \sigma W_t dt$,
- (b) $F = (\sigma W_T)^3$,
- (c) $F = \sin(\sigma W_T)$,

find a progessively measurable process $f: [0,T] \times \Omega \to \mathbb{R}^n$ with $\mathbb{E}[\int_0^T \|f(t)\|_2^2 dt] < \infty$ such that

$$F \stackrel{\text{a.s.}}{=} \mathbb{E}[F] + \int_0^T f(t) \, dW_t.$$

Hint: Apply Itō's formula to (a) $t\sigma W_t$ and (c) $e^{at} \sin(\sigma W_t)$ with suitable $a \in \mathbb{R}$.

4. Problem: Harmonic and holomorphic functions of Brownian motion

- (a) Let $W = \{W_t\}_{t\geq 0}$ denote a standard *n*-dimensional Brownian motion and let $f: \mathbb{R}^n \to \mathbb{R}$ be a harmonic function. Prove that $Z_t = f(W_t)$ for $t \ge 0$ defines a continuous local martingale.
- (b) Consider the two-dimensional standard Brownian motion $W = \{W_t\}_{t \ge 0}$ with $W_t =$ $W_t^{(1)} + iW_t^{(2)}$ as a \mathbb{C} -valued one. Let $f: \mathbb{C} \to \mathbb{C}$ be a holomorphic function. Prove that $Z_t = f(W_t)$ for $t \ge 0$ defines a \mathbb{C} -valued continuous local martingale.

Hints: (a) Use Itō's formula. (b) Use the Cauchy–Riemann equations and part (a).

5. Problem: A local martingale with continuous paths that is not a martingale Let $W = \{W_t\}_{t>0}$ denote a Brownian motion in dimension $n \geq 3$ with starting point $W_0 = x \in \mathbb{R}^n \setminus \{0\}$. For r > 0 define $\tau_r = \inf\{t \ge 0 \mid ||W_t||_2 \le r\}$. Show the following: (a) $M_t^{(r)} := ||W_{t \wedge \tau_r}||_2^{2-n}$ for $t \ge 0$ is a bounded martingle.

- (b) $\mathbb{P}(\tau_r < \infty) = (r/||x||_2)^{n-2}$ for all $r \in (0, ||x||_2]$.
- (c) $\mathbb{P}(W_t \neq 0 \text{ for all } t > 0) = 1.$
- (d) $M = \{M_t\}_{t\geq 0}$ with $M_t := \|W_t\|_2^{2-n}$ is a local martingale and can be represented as

$$M_t = \|x\|_2^{2-n} \exp\left((2-n) \int_0^t \frac{W_s \, dW_s}{\|W_s\|_2^2} - \frac{(2-n)^2}{2} \int_0^t \frac{ds}{\|W_s\|_2^2}\right), \qquad t \ge 0.$$

- (e) M is a supermartingale.
- (f) $\mathbb{E}[M_t] \to 0$ as $t \to \infty$, hence M is not a martingale.
- (g) $M_{\infty} := \lim_{t \to \infty} M_t$ exists almost surely and $M_{\infty} \stackrel{\text{a.s.}}{=} 0$.
- (h) $\{M_t\}_{t>0}$ is uniformly integrable.

Hints: (a) Show that $f(y) := \|y\|_2^{2-n}$ for $y \in \mathbb{R}^n \setminus \{0\}$ is harmonic and use Itō's formula. (b) Define $\tau_R = \inf\{t \ge 0 \mid \|W_t\|_2 \ge R\}$ for $R > \|x\|_2$ and apply Doob's optional sampling theorem to $\tau_r \wedge \tau_R$. Then consider $R \to \infty$. (d) For the representation apply Itō's formula to $\log \|W_t\|_2$. (e) Use the conditional version of Fatou's lemma. (f) Show that $\int_{B_r(0)} \|y\|_2^{2-n} dy = S_{n-1}r^2/2 < \infty$, where $B_r(0)$ is the *n*-dimensional ball with radius *r* centered the origin and S_{n-1} is the surface area of the (n-1)-dimensional unit sphere, and use an upper estimate for the continuous density of W_t . (g) Use Doob's convergence theorem for non-negative supermartingales. (h) Show that there is a constant c_n such that the continuous density of W_t outside $B_{\|x\|/2}(x)$ is bounded by $c_n/\|x\|_2^n$, uniformly for t > 0.

Remark: If n = 3, then M is the inverse three-dimensional Bessel process.

Remark: This problem shows that the stochastic exponential $\mathcal{E}(Y)$ of the continuous local martingale

$$Y_t := (2-n) \int_0^t \frac{W_s \, dW_s}{\|W_s\|_2^2}, \qquad t \ge 0,$$

is a strict local martingale, hence Kazamaki's criterion and Novikov's (local) criterion cannot be satisfied. Furthermore, for $||x||_2 = 1$ and (at least large) T > 0, the random variable M_T cannot be used to define an equivalent probability measure on (Ω, \mathcal{F}_T) .