3. Problem Set for the Course Mathematical Finance 2: Continuous-Time Models

April 17, 2012

6. Problem: Conditional expectation involving independent random variables Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space, $\mathcal{G} \subset \mathcal{F}$ a sub- σ -algebra, (S_1, \mathcal{S}_1) and (S_2, \mathcal{S}_2) measurable spaces, $X : \Omega \to S_1$ and $Y : \Omega \to S_2$ random variables, and $F : S_1 \times S_2 \to \mathbb{R}$ an $\mathcal{S}_1 \otimes \mathcal{S}_2$ -measurable function, which is bounded or non-negative. Suppose that X is \mathcal{G} -measurable and Y is independent of \mathcal{G} . Prove that

$$\mathbb{E}[F(X,Y)|\mathcal{G}] \stackrel{\text{a.s.}}{=} H(X), \tag{*}$$

where $H(x) := \mathbb{E}[F(x, Y)]$ for all $x \in S_1$.

Hint: Show that the set

 $\mathcal{H} := \{F \colon S_1 \times S_2 \to \mathbb{R} \mid F \text{ is bounded and } \mathcal{S}_1 \otimes \mathcal{S}_2 \text{-measurable satisfying } (*) \}$

contains all F of the form $F(x, y) = 1_A(x)1_B(y)$ with $A \in S_1$ and $B \in S_2$. Show that the monotone class theorem is applicable.

Remark: A version of this result is used to derive the Black–Scholes formula.

7. Problem: First entrance time for closed sets, first contact time for open sets Let $X = \{X_t\}_{t\geq 0}$ be an \mathbb{R}^d -valued process, adapted to a filtration $\mathbb{F} = \{\mathcal{F}_t\}_{t\geq 0}$. For $C \subset \mathbb{R}^d$ define $\tau := \inf\{t \geq 0 | X_t \in C\}$ with $\inf \emptyset := \infty$.

- (a) Assume that C is closed and X has continuous paths. Show that the first entrance time τ of X into C is a stopping time.
- (b) Give examples to show that τ might not be a stopping time if C is open or if X is just left-continuous.
- (c) Assume that C is open, X has right-continuous paths and the filtration \mathbb{F} is right-continuous. Show that the first contact time τ of X with C is a stopping time.

Hints: (a) Give a representation of $\{\tau \leq t\}$ involving open neighbourhoods of C. (b) Examples with $|\Omega| = 2$ suffice.

8. Problem:

Let S be a geometric Brownian motion. For $\varepsilon > 0$ define $\tau_{\varepsilon} = \inf\{t \ge 0 | S_t \ge S_0 + \varepsilon\}$. Prove the following:

- (a) $\lim_{\varepsilon \to \infty} \tau_{\varepsilon} \stackrel{\text{a.s.}}{=} \infty$,
- (b) $\lim_{\varepsilon \searrow 0} \tau_{\varepsilon} \stackrel{\text{a.s.}}{=} 0.$

Hints: (a) Use the continuity of the paths. (b) Use Girsanov's theorem to change to a measure $\mathbb{Q} \sim \mathbb{P}$ on (Ω, \mathcal{F}_T) such that S has a drift of 1. Apply Doob's optional sampling theorem to $\{e^{-t}S_t\}_{t\in[0,T]}$ to show that $\mathbb{E}_{\mathbb{Q}}[\exp(-(\tau_{\varepsilon} \wedge T))] \geq S_0/(S_0 + \varepsilon)$.