3. Problem Set for the Course Mathematical Finance 2: Continuous-Time Models

April 17, 2012
6. Problem: Conditional expectation involving independent random variables Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space, $\mathcal{G} \subset \mathcal{F}$ a sub- σ-algebra, $\left(S_{1}, \mathcal{S}_{1}\right)$ and $\left(S_{2}, \mathcal{S}_{2}\right)$ measurable spaces, $X: \Omega \rightarrow S_{1}$ and $Y: \Omega \rightarrow S_{2}$ random variables, and $F: S_{1} \times S_{2} \rightarrow \mathbb{R}$ an $\mathcal{S}_{1} \otimes \mathcal{S}_{2}$-measurable function, which is bounded or non-negative. Suppose that X is \mathcal{G}-measurable and Y is independent of \mathcal{G}. Prove that

$$
\begin{equation*}
\mathbb{E}[F(X, Y) \mid \mathcal{G}] \stackrel{\text { a.s. }}{=} H(X), \tag{*}
\end{equation*}
$$

where $H(x):=\mathbb{E}[F(x, Y)]$ for all $x \in S_{1}$.
Hint: Show that the set
$\mathcal{H}:=\left\{F: S_{1} \times S_{2} \rightarrow \mathbb{R} \mid F\right.$ is bounded and $\mathcal{S}_{1} \otimes \mathcal{S}_{2}$-measurable satisfying $\left.(*)\right\}$
contains all F of the form $F(x, y)=1_{A}(x) 1_{B}(y)$ with $A \in \mathcal{S}_{1}$ and $B \in \mathcal{S}_{2}$. Show that the monotone class theorem is applicable.
Remark: A version of this result is used to derive the Black-Scholes formula.
7. Problem: First entrance time for closed sets, first contact time for open sets

Let $X=\left\{X_{t}\right\}_{t \geq 0}$ be an \mathbb{R}^{d}-valued process, adapted to a filtration $\mathbb{F}=\left\{\mathcal{F}_{t}\right\}_{t \geq 0}$. For $C \subset \mathbb{R}^{d}$ define $\tau:=\inf \left\{t \geq 0 \mid X_{t} \in C\right\}$ with $\inf \varnothing:=\infty$.
(a) Assume that C is closed and X has continuous paths. Show that the first entrance time τ of X into C is a stopping time.
(b) Give examples to show that τ might not be a stopping time if C is open or if X is just left-continuous.
(c) Assume that C is open, X has right-continuous paths and the filtration \mathbb{F} is rightcontinuous. Show that the first contact time τ of X with C is a stopping time.
Hints: (a) Give a representation of $\{\tau \leq t\}$ involving open neighbourhoods of C.
(b) Examples with $|\Omega|=2$ suffice.

8. Problem:

Let S be a geometric Brownian motion. For $\varepsilon>0$ define $\tau_{\varepsilon}=\inf \left\{t \geq 0 \mid S_{t} \geq S_{0}+\varepsilon\right\}$. Prove the following:
(a) $\lim _{\varepsilon \rightarrow \infty} \tau_{\varepsilon} \stackrel{\text { a.s. }}{=} \infty$,
(b) $\lim _{\varepsilon \backslash 0} \tau_{\varepsilon} \stackrel{\text { a.s. }}{=} 0$.

Hints: (a) Use the continuity of the paths. (b) Use Girsanov's theorem to change to a measure $\mathbb{Q} \sim \mathbb{P}$ on $\left(\Omega, \mathcal{F}_{T}\right)$ such that S has a drift of 1 . Apply Doob's optional sampling theorem to $\left\{e^{-t} S_{t}\right\}_{t \in[0, T]}$ to show that $\mathbb{E}_{\mathbb{Q}}\left[\exp \left(-\left(\tau_{\varepsilon} \wedge T\right)\right)\right] \geq S_{0} /\left(S_{0}+\varepsilon\right)$.

