6. Problem Set for the Course Mathematical Finance 2: Continuous-Time Models

May 25, 2012

15. Problem: Class DL: Properties and examples

An adapted right-continuous process $X = \{X_t\}_{t\geq 0}$ is said to be of class DL, if the family $\{X_{\tau}\}_{\tau\in\mathcal{T}_{[0,b]}}$ is uniformly integrable for every bound b > 0, where $\mathcal{T}_{[0,b]}$ denotes the set of all stopping times $\tau: \Omega \to [0,b]$. Show the following:

- (a) The set of all adapted right-continuous process of class DL is a vector space.
- (b) A right-continuous submartingale X is of class DL if
 - (i) $X_t \ge 0$ almost surely for all $t \ge 0$ or
 - (ii) X can be represented as $X_t = M_t + A_t$ for all $t \ge 0$, where $\{M_t\}_{t\ge 0}$ is a rightcontinuous martingale and $\{A_t\}_{t\ge 0}$ with $A_0 = 0$ is increasing (with $\mathbb{E}[A_t] < \infty$ for all $t \ge 0$).

Hint: (b) Use Doob's optional sampling theorem and the uniform integrability property of conditional expectations.

16. Problem: Adding null sets to filtrations

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space and $\mathbb{F} = \{\mathcal{F}_t\}_{t\geq 0}$ a filtration of \mathcal{F} . Define

 $\mathcal{G}_t = \{ G \in \mathcal{F} \mid \text{There exists } F \in \mathcal{F}_t \text{ with } \mathbb{P}(F \bigtriangleup G) = 0 \}, \quad t \ge 0,$

and $\mathbb{G} = {\mathcal{G}_t}_{t\geq 0}$. Show the following:

(a) \mathbb{G} is a filtration and its σ -algebras contain all null sets of \mathcal{F} .

(b) If \mathbb{F} is right-continuous, then \mathbb{G} is right-continuous.

(c) If $X \in L^1(\Omega, \mathcal{F}, \mathbb{P})$, then $\mathbb{E}[X | \mathcal{F}_t] \stackrel{\text{a.s.}}{=} \mathbb{E}[X | \mathcal{G}_t]$ for all $t \ge 0$.

Hint: (b) For $G \in \mathcal{G}_{t+}$ and $n \in \mathbb{N}$ take $F_n \in \mathcal{F}_{t+1/n}$ with $\mathbb{P}(F_n \bigtriangleup G) = 0$. Consider $F := \limsup_{n \to \infty} F_n = \bigcap_{m \in \mathbb{N}} \bigcup_{n \ge m} F_n$.

Remark: Part (c) implies that \mathbb{F} -martingales are also \mathbb{G} -martingales, the same applies to sub- and supermartingales.

17. Problem: A non-negative supermartingale without a Doob–Meyer decomposition Consider the open unit interval $\Omega = (0,1)$ with Borel σ -algebra $\mathcal{F} = \mathcal{B}_{(0,1)}$ and Lebesgue–Borel measure \mathbb{P} . For $t \geq 0$ and $\omega \in \Omega$ define

$$X_t(\omega) = \begin{cases} \frac{1}{1-t} \mathbf{1}_{[0,\omega)}(t) & \text{if } t \in [0,1), \\ 0 & \text{if } t \ge 1, \end{cases}$$

and

$$\mathcal{F}_t = \begin{cases} \{F \in \mathcal{F} \mid F \subset (0, t] \text{ or } F^c \subset (0, t] \} & \text{if } t \in [0, 1), \\ \mathcal{F} & \text{if } t \ge 1. \end{cases}$$

Show the following:

(a) $\mathbb{F} = \{\mathcal{F}_t\}_{t \ge 0}$ is a right-continuous filtration.

(b) $X = \{X_t\}_{t \ge 0}$ is a non-negative, \mathbb{F} -adapted process with càdlàg paths.

(c) $\{X_t\}_{t \in [0,1)}$ is a martingale and X is a supermartingale.

(d) $\{X_t\}_{t \in [0,1)}$ is not uniformly integrable (hence X is not of class DL).

(e) X does not have a Doob–Meyer decomposition.

Hints: (c) Show for $s \leq t$ in [0, 1) that $X_t(\omega) = \frac{1-s}{1-t}X_s(\omega)1_{[0,\omega)}(t)$ and $\mathbb{P}((t, 1) | \mathcal{F}_s)(\omega) = \frac{1-t}{1-s}1_{(s,1)}(\omega)$. (e) If there exists a decomposition X = M - A, then $X_t \stackrel{\text{a.s.}}{=} \mathbb{E}[A_1 | \mathcal{F}_t]$ for all $t \in [0, 1)$, contradicting (d).

18. Problem: A uniformly integrable supermartingale without Doob-Meyer decomp. Consider the open unit square $\Omega = (0, 1)^2$ with Borel σ -algebra $\mathcal{G} = \mathcal{B}_{(0,1)^2}$ and twodimensional Lebesgue-Borel measure \mathbb{P} . For $t \geq 0$ and $(\omega_1, \omega_2) \in \Omega$ define

$$Y_t(\omega_1, \omega_2) = \begin{cases} 1 & \text{if } t < \omega_1, \\ \frac{1}{1+\omega_1-t} & \text{if } t \in [\omega_1, \omega_1 + \omega_2), \\ 0 & \text{if } t \ge \omega_1 + \omega_2, \end{cases}$$

and

$$\mathcal{G}_t = \{ G \in \mathcal{G} \mid G_{\omega_1} \in \mathcal{F}_{t-\omega_1} \text{ for all } \omega_1 \in (0,t] \\ \text{and } G \text{ or } G^c \text{ is a subset of } (0,t] \times (0,1) \},\$$

where $G_{\omega_1} = \{\omega_2 \in (0,1) \mid (\omega_1, \omega_2) \in G\}$ denotes the section of G at ω_1 and $\{\mathcal{F}_t\}_{t \ge 0}$ is the filtration given in the previous problem. Show the following:

(a) $\mathbb{G} = {\mathcal{G}_t}_{t\geq 0}$ is a right-continuous filtration.

(b) $Y = \{Y_t\}_{t \ge 0}$ is a non-negative, \mathbb{G} -adapted process with càdlàg paths.

(c) Y is a supermartingale satisfying for all $s \leq t$ in $[0, \infty)$ and almost all $\omega = (\omega_1, \omega_2)$

$$\mathbb{E}[Y_t | \mathcal{G}_s](\omega) = \begin{cases} \frac{2-t}{1-s} Y_s(\omega) \mathbf{1}_{[0,\omega_1)}(s) & \text{if } 1+s < t < 2, \\ Y_s(\omega) \mathbf{1}_{[0,1+\omega_1)}(t) & \text{otherwise.} \end{cases}$$
(*)

(d) Y is uniformly integrable.

(e) Y is not of class DL.

(f) Y does not have a Doob–Meyer decomposition.

Hints: Solve the previous problem first. (c) Show the \mathcal{G}_s -measurability of the righthand side of (*). To verify the integral condition for every $G \in \mathcal{G}_s$, use Fubini's theorem to integrate w.r.t. ω_2 first. (d) Show that $\mathbb{E}[Y_t \mathbb{1}_{\{Y_t \ge M\}}] \le 1/M$ for all M > 1and $t \ge 0$. (e) For M > 1 consider $\tau_M := \min\{2, \inf\{t \ge 0 \mid Y_t \ge M\}\}$ and show that $\tau_M(\omega_1, \omega_2) = 1 + \omega_1 - 1/M$ if $\omega_2 \ge (M - 1)/M$ and $Y_{\tau_M}(\omega_1, \omega_2) = M\mathbb{1}_{[(M-1)/M,1)}(\omega_2)$. (f) If there exists a decomposition Y = M - A, then $Y_{\tau_M} \le \mathbb{E}[A_2 \mid \mathcal{G}_{\tau_M}]$ almost surely for all M > 1, contradicting (e).