Name:
Mat.Nr.:

Bitte keinen Rotstift verwenden!

Finanzmathematik 2: Modelle in stetiger Zeit (Vorlesungsprüfung)
 7. Oktober 2013 Privatdoz. Dr. Stefan Gerhold

90 Minuten

Unterlagen: ein handbeschriebener A4-Zettel sowie ein nichtprogrammierbarer Taschenrechner sind erlaubt

Anmeldung zur mündlichen Prüfung via TISS möglich. Wenn zu wenig Prüfungstermine online sind, bitte den Vortragenden Stefan Gerhold kontaktieren.

Schriftlich:

Bsp.	Max.	Punkte
1	10	
2	10	
3	8	
\sum	28	

AssistentIn:

Mündlich:

Gesamtnote:

1. Fix a time horizon $T \in(0, \infty)$ and a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ on which there is a Brownian motion $\left(W_{t}\right)_{0 \leq t \leq T}$. We take as filtration $\mathbb{F}=\left(\mathcal{F}_{t}\right)_{0 \leq t \leq T}$ the one generated by W and augmented by the \mathbb{P}-nullsets in $\sigma\left(W_{s} ; s \leq T\right)$. Consider the Black Scholes model, where the bank account satisfies $B \equiv 1$, i.e. the interest rate $r \equiv 0$, and the undiscounted risky asset price is given by

$$
d S_{t}=S_{t}\left(\mu d t+\sigma d W_{t}\right), \quad S_{0}=1
$$

where $\mu \in \mathbb{R}$ and $\sigma>0$. Moreover, $\mathbb{P}^{*} \sim \mathbb{P}$ denotes the unique equivalent martingale measure for the discounted price process $S=\frac{S}{B}$.
(a) Define a probability measure $\widehat{\mathbb{P}}$ by

$$
\begin{equation*}
\frac{d \widehat{\mathbb{P}}}{d \mathbb{P}^{*}}:=S_{T} \tag{1}
\end{equation*}
$$

(i) Argue why $\left(S_{t}\right)_{t \in[0, T]}$ qualifies as Radon-Nikodým derivative process.
(ii) Show that

$$
\begin{equation*}
\widehat{W}_{t}:=W_{t}^{*}-\sigma t \tag{2}
\end{equation*}
$$

is a $\widehat{\mathbb{P}}$-Brownian motion, where W^{*} denotes a \mathbb{P}^{*}-Brownian motion.
(ii) Use Bayes' formula to show that $\frac{1}{S}$ is a $\widehat{\mathbb{P}}$-martingale.
(b) Consider the process

$$
\widehat{S}_{t}=\exp \left(-\sigma \widehat{W}_{t}-\frac{1}{2} \sigma^{2} t\right)
$$

where \widehat{W} is a $\widehat{\mathbb{P}}$-Brownian motion, as specified in (2), and $\widehat{\mathbb{P}}$ denotes the measure defined in (1).
(i) What is the relation between \widehat{S} and $\frac{1}{S}$.
(ii) Derive the SDE satisfied by \widehat{S} under \mathbb{P}.
(iii) Consider a new market model under \mathbb{P}, where the bank account is given by $B \equiv 1$ and the stock price process by \widehat{S}. Does this model admit arbitrage? Is it complete?
(c) Let the call and put prices with maturity T and strike K and underlying process S be given by

$$
C(T, K, S)=\mathbb{E}_{\mathbb{P}^{*}}\left[\left(S_{T}-K\right)^{+}\right], \quad P(T, K, S)=\mathbb{E}_{\mathbb{P}^{*}}\left[\left(K-S_{T}\right)^{+}\right]
$$

Moreover $\widehat{C}(T, K, S)$ and $\widehat{P}(T, K, S)$ denote the corresponding prices under the measure $\widehat{\mathbb{P}}$. Prove the following identity

$$
\frac{1}{K} C(T, K, S)=\widehat{P}\left(T, \frac{1}{K}, \frac{1}{S}\right)
$$

2. Consider the setting of the Black Scholes model, as specified in the above example, however now the interest rate is no longer supposed to be 0 , i.e., $r \geq 0$ and the bank account satisfies $B_{t}=e^{r t}$. An American digital put option with maturity $T>0$ can be exercised at any time $t \in[0, T]$ at the choice of the option holder and yields the payoff $1_{[0, K]}\left(S_{t}\right)$ at time $t \in[0, T]$. The option holder wants to find a strategy which maximizes his payoff.
(a) Consider the following possible situations at time t :
(i) $S_{t} \geq K$
(ii) $S_{t}<K$

In each case (i) and (ii), tell whether the option holder would choose to exercise the put option immediately or to wait.
(b) Show that the price at time 0 of an American digital put option with maturity T, strike K and initial stock price $S_{0}=x>K$ is given by

$$
P_{d}^{a}(0, x)=\mathbb{E}_{\mathbb{P}^{*}}\left[e^{-r \tau_{K}} 1_{\left\{\tau_{K} \leq T\right\}} \mid S_{0}=x\right],
$$

where

$$
\tau_{K}=\inf \left\{t \geq 0 \mid S_{t}=K\right\}
$$

(c) It is known that in the Black-Scholes model the price of an American digital put $P_{d}^{a}\left(t, S_{t}\right)$ satisfies the PDE

$$
r P_{d}^{a}(t, x)=\partial_{t} P_{d}^{a}(t, x)+r x \partial_{x} P_{d}^{a}(t, x)+\frac{1}{2} \sigma^{2} x^{2} \partial_{x x} P_{d}^{a}(t, x)
$$

for $t \in[0, T)$ and $x>K$. Determine the boundary conditions $P_{d}^{a}(t, K), 0 \leq$ $t<T$ and $P_{d}^{a}(T, x), x>K$ based on your answers in a).
(d) In the Black Scholes model the price at time t of an American digital put option with strike K can be computed via the following formula

$$
\begin{aligned}
P_{d}^{a}(t, x)= & \frac{x}{K} N\left(\frac{-\ln \left(\frac{x}{K}\right)-\left(r+\frac{\sigma^{2}}{2}\right)(T-t)}{\sigma \sqrt{T-t}}\right) \\
& +\left(\frac{x}{K}\right)^{-\frac{2 r}{\sigma^{2}}} N\left(\frac{-\ln \left(\frac{x}{K}\right)+\left(r+\frac{\sigma^{2}}{2}\right)(T-t)}{\sigma \sqrt{T-t}}\right), \quad x>K,
\end{aligned}
$$

where N denotes the cumulative distribution function of the standard normal distribution.
Show that this formula is consistent with the boundary conditions derived in (c).
(e) Suppose that $\mu=r=0$.
i) What is the probability to exercise the option in the interval $[0, T]$, if the initial stock price S_{0} equals $x>K$ (and the holder of the option acts rationally)?
ii) In the case $r=0$, is the price of the American digital put equal to the European digital put? Argue why this is true or false.
3. Consider a gap put with payoff

$$
\left(L-S_{T}\right) 1_{\left\{S_{T} \leq K\right\}} .
$$

(a) Draw the payoff function. For which values K and L does it take negative values?
(b) Decompose the option into a put- and a digital option.
(c) Find the price of the option at time 0 in the Black-Scholes model and determine a replicating portfolio.
(d) Determine the limits of the option price as $\sigma \rightarrow 0$ and $\sigma \rightarrow \infty$.

