Name:

Mat.Nr.:

Bitte keinen Rotstift verwenden!

Finanzmathematik 2: Modelle in stetiger Zeit (Vorlesungsprüfung) 4. November 2013 Privatdoz. Dr. Stefan Gerhold

90 Minuten

Unterlagen: ein handbeschriebener A4-Zettel sowie ein nichtprogrammierbarer Taschenrechner sind erlaubt

Anmeldung zur mündlichen Prüfung via TISS möglich. Wenn zu wenig Prüfungstermine online sind, bitte den Vortragenden Stefan Gerhold kontaktieren.

Bsp.	Max.	Punkte
1	12	
2	8	
3	8	
Σ	28	

Schriftlich:

AssistentIn:

Mündlich:

Gesamtnote:

1. Fix a time horizon $T \in (0, \infty)$ and a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ on which there is a ^(12 Pkt.) Brownian motion $(W_t)_{0 \le t \le T}$. We take as filtration $\mathbb{F} = (\mathcal{F}_t)_{0 \le t \le T}$ the one generated by W and augmented by the \mathbb{P} -nullsets in $\sigma(W_s; s \le T)$. Consider the Black Scholes model, where the bank account satisfies $B \equiv 1$, i.e. the interest rate $r \equiv 0$, and the risky asset price is given by

$$dS_t = S_t(\mu dt + \sigma dW_t), \quad S_0 = 1,$$

where $\mu \in \mathbb{R}$ and $\sigma > 0$. Moreover, $\mathbb{P}^* \sim \mathbb{P}$ denotes the unique equivalent martingale measure for the discounted price process $S = \frac{S}{B}$.

- (a) Let H be a nonnegative \mathcal{F}_T -measurable payoff due at time T.
 - (i) Construct a probability measure $\widehat{\mathbb{P}} \sim \mathbb{P}^*$ such that

$$E_{\mathbb{P}^*}[H] = E_{\widehat{\mathbb{P}}}\left[\frac{H}{S_T}\right].$$

Specify in particular the candidate density process $(Z)_{0 \le t \le T}$ and show that it satisfies all necessary properties such that

$$\frac{d\widehat{\mathbb{P}}}{d\mathbb{P}^*} := Z_T \tag{1}$$

defines an equivalent probability measure $\widehat{\mathbb{P}} \sim \mathbb{P}^*$.

(ii) Show that

$$\widehat{W}_t := W_t^* - \sigma t \tag{2}$$

is a $\widehat{\mathbb{P}}$ -Brownian motion, where W^* denotes a \mathbb{P}^* -Brownian motion.

- (iii) Use Bayes' formula to show that $\frac{1}{S}$ is a $\widehat{\mathbb{P}}$ -martingale.
- (b) Consider the process

$$\widehat{S}_t = \exp\left(-\sigma \widehat{W}_t - \frac{1}{2}\sigma^2 t\right),\tag{3}$$

where \widehat{W} is a $\widehat{\mathbb{P}}$ -Brownian motion, as specified in (2), and $\widehat{\mathbb{P}}$ denotes the measure defined in (1).

- (i) Derive the SDE satisfied by \widehat{S} under $\widehat{\mathbb{P}}$.
- (ii) What is the relation between \widehat{S} and $\frac{1}{S}$?
- (c) Consider a lookback call option with floating strike, whose payoff at time T is given by

$$H = \left(S_T - \alpha \min_{0 \le t \le T} S_t\right)^+, \quad \alpha \ge 1.$$
(4)

Show that its price at time 0 can be expressed by

$$\alpha E_{\widehat{\mathbb{P}}}\left[\left(\frac{1}{\alpha}-\min_{0\leq t\leq T}\widehat{S}_{t}\right)^{+}\right],$$

(a) Suppose at time t we have $S_t = x \ge 0$ and $Y_t = \int_0^t S_u du = y \ge 0$. Use the fact that $(e^{-ru}S_u)_{u\in[0,T]}$ is a martingale under \mathbb{P}^* to compute

where \widehat{S}_t is given by (3) and $\widehat{\mathbb{P}}$ denotes the measure defined in (1).

Hint: Use the reflection principle for a Brownian motion with drift: If $X_t =$ $bt + c\widehat{W}_t, b, c \in \mathbb{R}$ and \widehat{W} a $\widehat{\mathbb{P}}$ -Brownian motion, then we have for all $x \in \mathbb{R}$

 $\widehat{\mathbb{P}}\left[\max_{0 \le t \le T} X_t - X_T \le x\right] = \widehat{\mathbb{P}}\left[-\min_{0 \le t \le T} X_t \le x\right].$

This means that $\max_{0 \le t \le T} X_t - X_T$ and $-\min_{0 \le t \le T} X_t$ have the same law. (d) Let $\alpha = 1$ in (4). Show that the price of an American lookback call is the same

however now the interest rate is no longer supposed to be 0, i.e., $r \ge 0$ and the bank account satisfies $B_t = e^{rt}$. Moreover, consider a zero-strike Asian call whose payoff

 $H = \frac{1}{T} \int_{0}^{T} S_{u} du.$

$$e^{-r(T-t)} \mathbb{E}_{\mathbb{P}^*} \left[\frac{1}{T} \int_0^T S_u du | \mathcal{F}_t \right]$$

and denote this by v(t, x, y).

as the European counterpart.

at time T is

- (b) Determine explicitly the process $\Delta_t = v_x(t, S_t, Y_t)$ and observe that it is not random.
- (c) Use Itô's formula to show that if you begin with initial capital $X_0 = v(0, S_0, 0)$ and at each time you hold Δ_t shares of S, investing or borrowing at the interest rate r in order to do this, then at time T the value of your portfolio will be

$$X_T = \frac{1}{T} \int_0^T S_u du.$$

3. Consider a gap call with payoff

$$(S_T - L) \mathbf{1}_{\{S_T > K\}}.$$

- (a) Draw the payoff function. For which values K and L does it take negative values?
- (b) Decompose the option into an asset-or-nothing binary option and a cash-ornothing binary option.
- (c) Find the price of the option at time 0 in the Black-Scholes model and determine a replicating portfolio.
- (d) Determine the limits of the option price as $\sigma \to 0$ and $\sigma \to \infty$.

(8 Pkt.)

2. Consider the setting of the Black Scholes model, as specified in the above example, (8 Pkt.)