Mathematical Finance 2: Continuous-Time Models Exercise sheet 1

March 12, 2013

1. Consider a discrete-time model with finite time horizon T defined on a filtered probability space $(\Omega, \mathcal{F}, (\mathcal{F}_n)_{n \in \{0, \dots, T\}}, \mathbb{P})$ with stock price process S and bank account B whose initial value satisfies $B_0 = 1$. A strategy $\phi = (\phi^{(0)}, \phi^{(1)})$, that is, a predictable process¹ taking values in \mathbb{R}^2 is called *self-financing* if, for every $n \in \{1, \dots, T\}$, the value of the portfolio given by

$$V_n(\phi) := \phi_n^{(0)} B_n + \phi_n^{(1)} S_n$$

satisfies

$$V_n(\phi) = V_0(\phi) + \sum_{j=1}^n \phi_j^{(0)}(B_j - B_{j-1}) + \sum_{j=1}^n \phi_j^{(1)}(S_j - S_{j-1}).$$

a) Prove that a strategy ϕ is self-financing if and only if

$$\phi_n^{(0)}B_n + \phi_n^{(1)}S_n = \phi_{n+1}^{(0)}B_n + \phi_{n+1}^{(1)}S_n$$

for all $n \in \{0, \ldots, T-1\}$. Give a verbal interpretation of this property.

- **b)** Show that for any \mathbb{R} -valued predictable process $\phi^{(1)}$ and any \mathcal{F}_0 -measurable random variable V_0 , there exists a unique real-valued predictable process $\phi^{(0)}$ such that the strategy $\phi = (\phi^{(0)}, \phi^{(1)})$ is self-financing with $V_0(\phi) = V_0$.
- 2. Consider the multi-period Cox-Ross-Rubinstein binomial model with bank account $B_n = (1+r)^n$, r > -1, and stock price process S, where S evolves between two consecutive periods as

$$S_{n+1} = S_n Z_{n+1}, \quad n = 0, \dots, T-1, \quad S_0 > 0.$$

Here $(Z_n)_{n=1,\dots,T}$ are i.i.d random variables, taking only the two values u and d for u > d > 0 with probabilities

$$\mathbb{P}[Z_n = u] = p \text{ and } \mathbb{P}[Z_n = d] = 1 - p, p \in (0, 1).$$

Please turn over!

¹In the discrete time setting, this simply means that ϕ_n is \mathcal{F}_{n-1} -measurable for all $n \in \{1, \ldots, T\}$.

- a) If $u \leq 1 + r$ or $d \geq 1 + r$, find an arbitrage opportunity, that is, a selffinancing strategy ϕ with $V_0(\phi) = 0$, $V_T(\phi) \geq 0$ P-a.s. and $\mathbb{P}[V_T(\phi) > 0] > 0$, where $V = \phi^{(0)}B + \phi^{(1)}S$ denotes the value process.
- **b)** If u > 1 + r > d, find an equivalent probability measure $\mathbb{Q} \approx \mathbb{P}$ such that the discounted price process $\frac{S}{B}$ is a \mathbb{Q} -martingale.
- **3.** Let $W = (W_t)_{t \ge 0}$ be a standard *n*-dimensional Brownian motion and $\sigma \in \mathbb{R}^n$. In every one of the cases
 - a) $M_t = \sum_{i=1}^n \sigma_i W_{t,i}$
 - **b)** $M_t = ||W_t||_2^2 nt$,
 - c) $M_t = \exp\left(\sum_{i=1}^n \sigma_i W_{t,i} \frac{1}{2} \|\sigma\|_2^2 t\right)$

find a progressively measurable process $H: [0,\infty) \times \Omega \to \mathbb{R}^n$ with

$$\mathbb{E}\left[\int_0^t \|H_s\|_2^2 ds\right] < \infty, \quad t \ge 0,$$

such that

$$M_t \stackrel{\text{a.s.}}{=} \mathbb{E}[M_0] + \sum_{i=1}^n \int_0^t H_{s,i} dW_{s,i} \, .$$

Hint: Apply the *n*-dimensional Itô-formula.

4. Let $W = (W_t)_{t \ge 0}$ be a standard one-dimensional Brownian motion and $\sigma \in \mathbb{R}$. Give a direct proof that

$$S_t = S_0 \exp\left(\sigma W_t + (\mu - \frac{1}{2}\sigma^2)t\right), \quad t \ge 0$$

is (up to indistinguishability) the unique strong solution of the stochastic differential equation

$$dS_t = S_t \mu dt + S_t \sigma dW_t, \quad t \ge 0,$$

with deterministic initial condition $S_0 > 0$.

Hint: For uniqueness, let \widetilde{S} denote another solution of the SDE and apply the two-dimensional Itô-formula to the process $X_t = \frac{\widetilde{S}_t}{S_t}$ for $t \ge 0$.