Christa Cuchiero

Mathematical Finance 2: Continuous-Time Models Exercise sheet 8

May 16 , 2013

1. Consider the Black and Scholes model for the stock price process S and assume that the interest rate r is constant. Let g be a nonnegative continuous reward function such that

$$\mathbb{E}_{\mathbb{P}^*}\left[\sup_{t\in[0,T]}e^{-rt}g(S_t,t)\right]<\infty.$$

Prove that

$$\sup_{\tau \in \mathcal{T}_{[0,T]}} \mathbb{E}_{\mathbb{P}^*} \left[e^{-r\tau} g(S_{\tau}, \tau) \right] = \inf_{M \in \mathcal{M}_0} \mathbb{E}_{\mathbb{P}^*} \left[\sup_{t \in [0,T]} \left(e^{-rt} g(S_t, t) - M_t \right) \right],$$

where $\mathcal{T}_{[0,T]}$ denotes the set of all stopping times (with respect to the filtration (\mathcal{F}_t) generated by S) which satisfy $0 \le \tau \le T$ a.s. and \mathcal{M}_0 is the set of all right continuous martingales $M = (M_t)_{0 \le t \le T}$ with $M_0 = 0$.

2. Let W^* be a Brownian motion defined on a probability space $(\Omega, \mathcal{F}, \mathbb{P}^*)$ and consider the process $X_t = \mu t + W_t^*$ for $\mu \in \mathbb{R}$. Let m > 0 and define the stopping time

$$\tau_m = \inf\{t \ge 0 \,|\, X_t = m\},\$$

which takes the value ∞ if the level *m* is never reached. Prove that the Laplace transform of τ_m is given by

$$\mathbb{E}_{\mathbb{P}^*}\left[e^{-\lambda\tau_m}\right] = e^{-m(-\mu + \sqrt{\mu^2 + 2\lambda})}, \quad \forall \lambda > 0.$$

3. Consider the Black and Scholes model for the stock price process S (with infinite time horizon) and assume that the interest rate r > 0 is constant. Consider a perpetual American put, that is, a derivative (with infinite maturity) which pays $K - S_t$ if exercised at time t. Suppose that the owner of the American put sets a level L < K and exercises the put the first time the stock price falls to L. If

Please turn over!

the initial price x satisfies $x \leq L$, the owner exercises the option immediately, otherwise at the stopping time

$$\tau_L = \inf\{t \ge 0 \mid S_t = L\},\$$

where $\tau_L = \infty$ if the stock prices never reaches L.

a) Show that the value at time 0 (as a function of the initial stock price x) of the perpetual American put under this exercise strategy is given by

$$v_L(x) = \begin{cases} K - x & \text{if } 0 \le x \le L, \\ (K - L)\mathbb{E}_{\mathbb{P}^*} \left[e^{-r\tau_L} \right] = (K - L) \left(\frac{x}{L} \right)^{-\frac{2r}{\sigma^2}} & \text{if } x \ge L. \end{cases}$$

b) Define

$$L_* = \frac{2r}{2r + \sigma^2} K.$$

Show that L_* maximizes the function $L \mapsto v_L(x)$ for every fixed x.

- c) Show that v_{L_*} satisfies the so-called *linear complementarity conditions*, that is
 - i) $v_{L_*}(x) \ge (K-x)^+$ for all $x \ge 0$,
 - ii) $rv_{L_*}(x) rxv'_{L_*}(x) \frac{1}{2}\sigma^2 x^2 v''_{L_*}(x) \ge 0$ for all $x \ge 0$,
 - iii) for every $x \ge 0$, equality holds either in i) or in ii).
- 4. Consider the setting of exercise 3.
 - a) Prove that
 - $e^{-rt}v_{L_*}(S_t)$ is a \mathbb{P}^* -supermartingale and
 - the stopped process $e^{-r(t \wedge \tau_{L_*})} v_{L_*}(S_{t \wedge \tau_{L_*}})$ is a \mathbb{P}^* -martingale.
 - b) Conclude that the price of the American perpetual put defined via

$$\sup_{\tau \in \mathcal{T}} \mathbb{E}_{\mathbb{P}^*} \left[e^{-r\tau} (K - S_\tau) \right]$$

is given by $v_{L_*}(x)$, where $x = S_0$ and \mathcal{T} denotes the set of all stopping times.

- c) Describe the hedging strategy of the seller of the American perpetual put, who has initial capital $V_0 = v_{L_*}(x)$.
- 5. Consider the setting of Exercise 3 and an American put with strike K and finite maturity T. Define

$$b^*(T-t) = \sup\{x \ge 0 \mid P^a(x, T-t) = (K-x)^+\},\$$

Please turn over!

where $P^{a}(x, T - t)$ denotes the price at time t of the American put if the time-t stock price is x, that is,

$$P^{a}(x,T-t) = \operatorname{ess\,sup}_{\tau \in \mathcal{T}_{[t,T]}} \mathbb{E}_{\mathbb{P}^{*}} \left[e^{-r(\tau-t)} (K-S_{\tau})^{+} \mid S_{t} = x \right].$$

- **a)** Show that $L_* \leq b^*(t) \leq K$ for all $t \in [0, T]$.
- **b)** Deduce the following bounds for the early exercise premium, that is, the difference between the price of the American and the European put, where the latter is denoted by $P^e(x,t)$ (here t is time to maturity)

$$rK \int_0^t e^{-ru} N\left(\frac{\ln\left(\frac{L_*}{x}\right) - (r - \frac{\sigma^2}{2})u}{\sigma\sqrt{u}}\right) du \le P^a(x, t) - P^e(x, t)$$
$$\le rK \int_0^t e^{-ru} N\left(\frac{\ln\left(\frac{K}{x}\right) - (r - \frac{\sigma^2}{2})u}{\sigma\sqrt{u}}\right) du.$$

Hint: You can use the results of Musiela and Rutkowski, Section 5.3.