Mathematical Finance 2 : Continuous-Time Models Exercise sheet 10

June 13, 2013

1. The aim of this exercise is to prove Lee's moment formula, as stated in Proposition 7.1.2 in Musiela/Rutkowski. Let the interest rate be equal to 0 , denote by S_{0} the initial stock price, and define the log-moneyness x related to strike by

$$
x=\log \left(\frac{K}{S_{0}}\right),
$$

so that $K(x)=S_{0} e^{x}$ is the strike at log-moneyness x. Black-Scholes implied volatility at log-moneyness x is defined as the unique solution $\hat{\sigma}_{0}(x)$ of the equation $C_{0}(T, K(x))=c\left(S_{0}, T, K(x), \hat{\sigma}_{0}(x)\right)$, where

$$
c\left(S_{0}, T, K(x), \sigma\right)=S_{0} N\left(d_{+}\right)-K(x) N\left(d_{-}\right),
$$

with

$$
d_{ \pm}=\frac{-x}{\sigma \sqrt{T}} \pm \frac{\sigma \sqrt{T}}{2} .
$$

Let $\beta>0$ and let us denote by $f_{-}(\beta)$

$$
f_{-}(\beta)=\frac{1}{\beta}+\frac{\beta}{4}-1
$$

Furthermore, define

$$
\widetilde{p}=\sup \left\{p>0 \mid \mathbb{E}_{\mathbb{P}^{*}}\left[S_{T}^{p+1}\right]<\infty\right\}
$$

and

$$
\widetilde{\beta}=\limsup _{x \rightarrow \infty} \frac{T \hat{\sigma}_{0}^{2}(x)}{x} .
$$

Lee's moment formula states the following relation between \widetilde{p} and $\widetilde{\beta}$:

$$
\widetilde{p}=\frac{f_{-}(\widetilde{\beta})}{2},
$$

where $1 / 0:=\infty$ if $\widetilde{\beta}=0$.
a) Prove for $\beta \in(0,2)$

$$
\lim _{x \rightarrow \infty} \frac{e^{-c x}}{c\left(S_{0}, T, K(x), \sqrt{\frac{\beta(x \mid x}{T}}\right)}=\left\{\begin{array}{cc}
0 & \text { if } c>\frac{f_{-}(\beta)}{\infty} \\
\infty & \text { if } c \leq \frac{f_{-}(\beta)}{2}
\end{array} .\right.
$$

b) Use this and Proposition 7.1.1 to show that

$$
\lim _{x \rightarrow \infty} \frac{c\left(S_{0}, T, K(x), \hat{\sigma}_{0}(x)\right)}{c\left(S_{0}, T, K(x), \sqrt{\frac{\beta|x|}{T}}\right)}=0
$$

for every $\beta \in(0,2)$ satisfying $\frac{f_{-}(\beta)}{2}<\widetilde{p}$ and conclude that $\widetilde{p} \leq \frac{f_{-}(\widetilde{\beta})}{2}$.
c) Let f be a twice-differentiable function and let $\varkappa \geq 0$. Prove that

$$
\begin{aligned}
f\left(S_{T}\right)= & f(\varkappa)+f^{\prime}(\varkappa)\left(\left(S_{T}-\varkappa\right)^{+}-\left(\varkappa-S_{T}\right)^{+}\right) \\
& +\int_{0}^{\varkappa} f^{\prime \prime}(K)\left(K-S_{T}\right)^{+} d K+\int_{\varkappa}^{\infty} f^{\prime \prime}(K)\left(S_{T}-K\right)^{+} d K
\end{aligned}
$$

and conclude that

$$
\begin{equation*}
\mathbb{E}_{\mathbb{P}^{*}}\left[S_{t}^{p+1}\right]=\mathbb{E}_{\mathbb{P}^{*}}\left[\int_{0}^{\infty}(p+1) p K^{p-1}\left(S_{T}-K\right)^{+} d K\right] \tag{1}
\end{equation*}
$$

d) Use (1) to show that for all $0<p<\frac{f_{-}(\widetilde{\beta})}{2}, \mathbb{E}_{\mathbb{P}^{*}}\left[S_{t}^{p+1}\right]<\infty$. Conclude using b) that $\widetilde{p}=\frac{f_{-}(\widetilde{\beta})}{2}$.
2. Let T^{*} denote a finite time horizon and consider the following model for the stock price under \mathbb{P}^{*} :

$$
d S_{t}=S_{t}\left(r d t+\sigma_{t} d W_{t}^{*}\right), \quad S_{0}>0
$$

where $r \geq 0$ denotes the interest rate and σ is a progressively measurable process satisfying

$$
\mathbb{E}\left[\int_{0}^{T} \sigma_{t}^{2} d t\right]<\infty, \quad 0 \leq T \leq T^{*}
$$

Assume in addition that the random variable S_{T} admits a density for every $0<T \leq T^{*}$. Define

$$
c(K, T)=e^{-r T} \mathbb{E}_{\mathbb{P}^{*}}\left[\left(S_{T}-K\right)^{+}\right]
$$

and assume that it is of class $C^{1,2}\left(\mathbb{R} \times\left[0, T^{*}\right], \mathbb{R}\right)$. Let

$$
\sigma^{2}(K, T):=\mathbb{E}_{\mathbb{P}^{*}}\left[\sigma_{T}^{2} \mid S_{T}=K\right]
$$

and show that $c(K, T)$ satisfies

$$
-c_{T}(K, T)+\frac{1}{2} \sigma^{2}(K, T) K^{2} c_{K K}(K, T)-r K c_{K}(K, T)=0
$$

by mimicing the proof of Proposition 7.3.1 in Musiela/Rutkowski.

