Sterbetafel und Kapitalversicherung

1. Betrachte die folgende Sterbetafel für Hunde:

x	l_x
0	100
1	95
2	90
3	83
4	73
5	65
6	53
7	40
8	27
9	8

Berechne die NEP $_nE_x$ einer Erlebensversicherung für Hunde mit $\delta=0.01$ und

- (a) x = 4, n = 4,
- (b) x = 5, n = 4,
- (c) x = 6, n = 4.
- 2. Berechne die NEP $A_{x:\overline{n}|}^1$ und $A_{x:\overline{n}|}$ einer n-jährigen temporären Todesfallversicherung (auch Ablebensversicherung genannt), bzw. gemischten Versicherung für Hunde mit $\delta=0.01$ und
 - (a) x = 4, n = 4,
 - (b) x = 5, n = 4.
- 3. Betrachte das gedächtnislose Modell von voriger Woche, also den Fall, dass T_0 exponentialverteilt ist mit Parameter $\lambda = \frac{1}{80}$ (Erinnerung: T_x hat dann für alle x > 0 die selbe Verteilung wie T_0). Weiters sei $\delta = 0.08$ gegeben.
 - (a) Berechne die NEP \bar{A}_x einer exakt zum Todeszeitpunkt ausgezahlten unbefristeten Todesfallversicherung.
 - (b) Berechne die NEP A_x einer nicht-stetigen unbefristeten Todesfallversicherung.
- 4. (a) Zeige: Für v>0 existiert ein $\theta\in [v,1],$ sodass $\bar{A}_x=\theta\,q_x+v\,p_x\,\bar{A}_{x+1},$ für alle $1\leq x\leq \omega.$
 - (b) Berechne anhand der beigefügten Sterbetafel A_x , für alle $0 \le x \le 100$, mit Hilfe der in der Vorlesung gezeigten Rekursion für A_x . An dieser Stelle wird es wahrscheinlich klug sein, einen Computer zu verwenden.