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Introduction

We now consider some problems with the models we have developed
(principally logit) and what can be done to avoid them.

Note: the more technical material on mixed logit will not be part of the final

examination.
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IIA

Suppose that the logit model holds; and consider the odds that
individual i will selected mode j over mode h.

With logit choice probabilities, this is a routine calculation: the
denominators cancel and we have

Pij
Pih

=
evij

evih

We see that the odds depends only on the systematic (observable)
utility of the two modes in question.

Put another way, the odds do not depend on (are independent of) the
characteristics of any other (irrelevant) alternatives – only the two
alternatives (j and h) in question.

This is the Independence of Irrelevant Alternatives (IIA) property of
the logit model.
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So What?

Although the IIA property is easiest to see for the logit model, it will
in fact hold for any model in which the idiosyncratic terms (the η’s)
are independent and identically distributed random variables.

But again, so what?

It turns out that this property can lead to demonstrably wrong
predictions about mode choices.

Philip A. Viton ()CRP 775 – Extensions November 21, 2011 4 / 40



Red Bus / Blue Bus

To see this, consider a situation in which there are two available
modes, auto and a bus transit mode. And suppose that the transit
system paints all its buses red.

Suppose that we are looking at the aggregate choice probabilities,
rather than those of a single individual. In this case, the choice
probabilities will be the modal shares.

Suppose, finally, that the observed shares are

PA = 0.7

PRB = 0.3

where the subscripts A and RB refer to auto and the (red) bus
modes, respectively.
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Red Bus / Blue Bus

Now suppose that a new transit mode becomes available.

It is exactly like the existing mode in all respects, except that its
buses are painted blue rather than red.

We are now asked to predict the mode shares in the 3-mode setting.

Surely this is completely clear: the two transit modes will split the
previous transit-using population, and we will have

P ′A = 0.7

P ′RB = 0.15

P ′BB = 0.15

where the primes refer to the 3-mode setting.
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Red Bus / Blue Bus

However the logit model does not agree. For the 3-mode setting, it
reasons as follows:
Because of IIA, the odds of selecting auto over red bus do not depend
on whether there is a blue bus in the picture or not (the blue bus is
an irrelevant alternative here) so:

P ′A
P ′RB

=
PA
PRB

=
0.7
0.3

= 2. 333 3

And because the two transit modes are identical, their choice
probabilities must be the same:

P ′RB = P
′
BB

And finally the choice probabilities must add up to one:

P ′A + P
′
RB + P

′
BB = 1
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Red Bus / Blue Bus

Therefore we have:

P ′A = 2.3333 P ′RB
1 = 2.3333 P ′RB + P

′
RB + P

′
RB

= 4.3333 P ′RB

So:
P ′RB =

1
4.3333

= 0.230 77

And thus:

P ′A = 2.3333× 0.230 77 = 0.538 46
P ′RB = 0.230 77

P ′BB = 0.230 77

:
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Red Bus / Blue Bus

But this is just wrong : it conflicts with what we know to be the
case.

We have, in the 3-mode setting:

Mode We know Logit says

Auto 0.70 0.538
Red Bus 0.15 0.231
Blue Bus 0.15 0.231

So the logit model has significantly mis-predicted the outcome.
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Diagnosing the Problem

What has gone wrong?

Think back to the formulation of the logit model. In it we assumed
that the random terms (the η’s) were i.i.d T1EV random variates.

But we constructed our red bus / blue bus story by implicitly
assuming that (for the two bus modes) not only were the random
terms not independent, they were perfectly correlated.

In other words, our story was inconsistent with a fundamental
assumption about the logit model.

This is why a similar counter-example will hold for any choice model
assuming independent and identically distributed random terms: it will
therefore hold for independent probit, but not for the general case of
multinomial probit (which allows for correlated random terms; though
the choice probabilities in this case may be very hard to compute).
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Another Version of the Problem

In the problem set, you were asked to formulate an alternative version
of the problem.

This can be stated as: the impact (percent change) on the choice
probabilities of two alternatives of a percent change in a characteristic
of a third (irrelevant) alternative, will be the same.

In our example, we would expect that the impact of Hyundai
changing the price of its cars would be different (greater) on the
demand (choice probability) for a KIA than for a Lexus.

But the logit model says that the impact (in percentage terms) will
be the same. But this is surely just wrong.

This illustrates the fact that perfect correlation (as in the red bus /
blue bus case) isn’t necessary in order to get anomalous results.
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More Questions

This raises at least three questions for our use of the logit model.

1. When can this model be used?
If the choices in our sample are consistent with the IIA property, then
it is safe to use logit. If choices are inconsistent with IIA, then logit
may give seriously wrong predictions.

2. How can we tell whether it is safe to use the logit model? That is,
how can we tell if are the observed choices in our sample are
consistent with the IIA property characterizing the logit model?

3. If logit is not a safe model for our particular context, are there models
available that do not assume the IIA property (and hence would be
safe to use in this situation)?
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Diagnosing IIA

The literature contains several statistical tests that can be used to
decide whether observed choices are (or are not) consistent with IIA.

They are all based on the following simple idea.

Suppose choices are consistent with IIA, and we estimate a logit
model.

Then if we (randomly) remove some un-selected (irrelevant)
alternatives from the choice sets and re-estimate a logit model with
the smaller choice sets, then, up to the randomness induced by our
incomplete information, the two sets of estimates should be
(approximately) the same.
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Diagnosing IIA

The analytical diffi culty consists in deriving a statistical test for the
“sameness”of the two logit models.

A number of authors have done this: among the most often used
tests are those by Hausmann and McFadden, and by Small and Hsiao.

We will not pursue the details of these tests here; but some of the
more sophisticated discrete-choice computer packages (including
LIMDEP) have ways to compute these tests at least
semi-automatically.
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Models Without IIA

Over the years, researchers have developed several choice models that
attempt to retain the easy computability of the logit model but do
not imply the IIA property.

Some of these are:

nested logit, which groups the alternatives into classes such that IIA
holds within a class but not between classes
heteroskedastic extreme value, which retains independence but relaxes
the assumption of identically distributed random variables over the
alternatives.

In the rest of this note, we describe a third, more recent development
in this area.
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Random Coeffi cients

Think back to our formulation of the statistical version of the logit
model.

There we were forced to assume that all the decision-makers in our
sample utilized the same decision rule (the same weighting vector β).

But if you think about it, this is not a very plausible assumption. We
would surely expect different people to place different emphases
(weights) on the various observable characteristics of the modes in
the choice set.
For example, a poor person may think that mode cost is very
important, but a millionaire probably wouldn’t care much about cost.
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Random Coeffi cients

So it would seem to be desirable to allow different individuals to have
different weights (β’s)

But how could we estimate a model in which different individuals
used different β’s? After all, the inability to estimate a single
individual’s weighting vector was the entire motivation for our taking
the statistical (random sampling) approach to estimation in the first
place.
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Random Coeffi cients

The answer is to take an intermediate view between the
one-β-for-the-entire-sample, and one-β-per-individual possibilities.

Instead we will say that the elements of the weighting vector β have a
joint distribution in the population. Some individuals’β’s may be in
one tail of the distribution, some in the other tail, and some may be
near the center of the distribution.

So we will assume that β has some joint probability distribution
(density) function g(β; α) where α is a set of characteristics
describing the distribution g . For example, if g was the normal
distribution, then α might be the mean vector and covariance matrix.
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Random Coeffi cients

Note what is going on here: we are introducing yet another level of
randomness into the problem.

There is the randomness associated with our incomplete information
(the η’s) and now, the additional randomness associated with the
variation of the β’s in the population.

This new source of randomness induces another change of
perspective: as we will see later, we will not be able to say anything
about the β’s themselves: instead, we will be able to discuss only
what the data reveals about their distribution in the population: that
is, our inference will be about the elements of α.
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Mixed Logit

A model in which the η’s retain their i.i.d T1EV formulation but
where the coeffi cients β are themselves also random is called the
Mixed-Logit (MXL) model.

So our first question is, does this model help us to resolve the IIA
issue? That is, does the mixed-logit model avoid IIA? If not, then
nothing will have been achieved (though a model with randomly
varying coeffi cients may be of independent interest).
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Mixed Logit – Choice Probabilities

To answer this question, we now derive an expression for the choice
probabilities of the mixed logit model.

Consider individual i , and let her coeffi cient vector be βi .

Suppose we knew βi . Then we’d be back in the original model
formulation and the conditional choice probability – the choice
probability conditional on our knowledge of βi – would be the usual
(“standard”) logit model:

Pij |βi =
exij β

i

∑m eximβi

(assuming a linear-in-parameters formulation of vij ).

But of course we do not know βi . However, we do know its
distribution in the population: this is g(βi ; α)

Philip A. Viton ()CRP 775 – Extensions November 21, 2011 21 / 40

Mixed Logit – Choice Probabilities

Then we can use Bayes’Theorem (sometimes called in this context
the Theorem of Total Probability) to un-conditionalize the conditional
choice probabilities.

We just weight each possible value of βi by its probability, and then
average (integrate) over all possible values.

Note that this is a version of the strategy we used to derive the mode
choice probabilities for the standard (i.i.d) logit model.
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Mixed Logit – Choice Probabilities

The result is:

Pij (α) =
∫
Pij |βi g(β

i ; α) dβi

=
∫ exij β

i

∑m eximβi
g(βi ; α) dβi

where the region of integration is where g is positive.

Note that this is deceptively simple-looking: the integral is over all K
elements of βi , that is, this is a K -fold multidimensional integral.

Also note that when we do the integration, βi is integrated out, and
the result will depend just on α. This justifies our earlier remark that
we will be able to discuss only the distribution of the β’s, not the β
values themselves. (But see the discussion of panel data for a hint as
to how this could change).
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Mixed Logit and IIA

If you examine this unconditional choice probability, it should be
apparent that if we now compute the odds of choosing mode j over
mode h then the denominators of the logit expression do not simply
cancel as they did for standard logit.

The result is that the mixed logit choice probabilities do not imply the
IIA property.

This will be true even if we assume that the elements of βi are
statistically independent.
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Mixed Logit : Estimation

But now we seem to have jumped out of the frying pan into the fire.

It is true that we have formulated a model that does not imply IIA
(and that was the aim of the exercise).

But on the other hand, we have a model that, in order to compute
the choice probabilities, requires us to do a multivariate integration.

And note that, in our maximum-likelihood setting, we will need to do
this potentially many, many times (each time we try out a new guess
for a possible value for an element of β).

So have we really gained anything?
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Mixed Logit : Estimation

Until relatively recently, the received answer was No.

We have a perfectly reasonable theoretical model of mode choice, and
one that does not involve the restrictive IIA property.

But in practice, because of the integrations required, it was
computationally intractable.
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Mixed Logit : Estimation

Two things occurred that make the mixed-logit model usable in practice.

The first was the development of Monte Carlo or simulation methods
for evaluating diffi cult integrals. This has been around for some time
– since the 1950’s, when it was associated with the mathematician
Stanislaw Ulam – and has often been used to compute a single
diffi cult integral.

The second was the development of very fast computers, with large
addressable memory space. This enabled researchers to do the many
evaluations of the integrals that would be required for estimation of
the mixed logit model.
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Integration by Simulation

Without going into all the details, the idea behind Monte Carlo evaluation
of an integral is as follows:

1. The integral we need to evaluate may be considered as the
expectation of a function of a random variable. That is, for a function
f (β) of the random variable β, its expectation is by definition:

E [f (β)] =
∫
f (β) g(β) dβ

where g is the density (frequency) function of β.

2. Expectations are averages. So with a suffi ciently large sample, you
can compute an expectation by averaging the relevant data.
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Integration by Simulation

Putting these two ideas together suggests how we might approximate
(simulate) the value of the integral defining the mixed-logit choice
probability:

1. Draw a random value (number) – call if βi (r ) – from the
distribution g of the weighting vector βi . At this point the value of βi

is known (it is βi (r )) so we are back with the standard logit model.

2. Compute the logit choice probability:

P (r )ij =
exij β

i (r )

∑m exij β
i (r )

which is just the logit model evaluated using βi (r ).
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Integration by Simulation

3. Repeat this many times (R times). The result is P (1)ij ,P
(2)
ij , . . .P (R )ij .

4. Average the results:

P̂ij =
R

∑
r=1

P (r )ij

5. It can be shown that P̂ij is an unbiased estimate of the
multidimensional integral defining the mode-choice probability, and an
estimate whose variance decreases with R.

.
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Estimation by Simulation

We can use this result to do the equivalent of maximum-likelihood
estimation for our mode-choice problem.

The new procedure, which uses the simulated estimates P̂ij in place of
the computed Pij in the ordinary logit model, is called estimation by
“maximum simulated likelihood”.

It has been shown that the large sample properties of (ordinary)
maximum-likelihood estimation apply here too, when R (the number
of random draws used to do the simulation) is large.
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Estimation by Simulation

In practice, R may range from a few hundred to several thousands.

It should be clear why we need fast computers in order to make this
usable in practice: we will need to simulate these choice probabilities
repeatedly for each individual in our sample, and for many iterations
of our search for the maximum of the (simulated) likelihood function.

Whereas estimation of the standard logit model usually takes a few
seconds, estimation of the mixed logit model can take many minutes,
sometimes even hours.
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Estimation by Simulation

Remember that what you get from the mixed logit model is not an
estimate of the individual specific weighting parameters, but an
estimate of the distributional parameters (the α’s)

This means that you will need to make a specific assumption about
the joint distribution of the elements of β.
The computer packages that support estimation of this model allow
you to choose between a few selected distributions, usually normal,
uniform over some range (and this range is what you will be
estimating), and lognormal.
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Estimation by Simulation

The lognormal case is for when you know in advance the sign of a
particular element of β : for example, if you are looking at the weight
for trip cost, you would expect this to be negative, for all
decision-makers.
A model that assumed that the distribution of this element was
normal – which would allow for both positive and negative values –
would not be appropriate. (Since the lognormal distribution is
positive, in this case you’d say that minus the particular element of β
is lognormally distributed.
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Extension – Panel Data

Suppose we have a sample in which each individual is represented
more than once: that is, we observe the choices that an individual
makes on more than one occasion.

This is known in the literature as observations on a panel of
individuals.

Under the standard logit model, there is no way to distinguish the
case where the second, third . . . observations are for a single
individual and the case where they represent different individuals.

But under mixed logit the situation changes.
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Extension – Panel Data

That is because when we estimate this model by simulation we draw
βi (r ) for individual i . With repeated observations on this individual,
we would use this same draw for all the observations.

The result is that the likelihood for individual i will be, with repeated
observations, the product of logit functions (one element for each
time that i is observed). This product will then be averaged over, in
order to estimate Pij .

For the next individual, say h, the same thing will apply: we will draw
βh(r ) and use it for all the observations on this individual.
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Individual-Level Parameters

Suppose we observe individual i making multiple mode choices.

Intuitively, these multiple observations may allow us to say something
about the individual parameter vector applicable to this individual.

This turns our to be true: in the mixed-logit setting we can estimate
the expected value of βi for each individual i . This turns out to be
another long simulation of the choice probabilities.
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Multinomial Probit

Recall that we previously noted that the general multinomial probit
model was thought to be inestimable, for the case of more than about
4 alternatives.
As you might suspect, the simulation techniques we have discussed
here can also be adopted to this choice model.
It turns out that the crucial underlying task – drawing a random
vector βi (r ) from a general multinormal (correlated) distribution – is
fairly easy, provided we can draw from the standard normal
distribution.
The result is that multinomial probit has now become estimable via
simulation.
But note that in the general case – a covariance matrix with
non-zero cross-covariances – there are restrictions on the number
that can be separately identified. This is an issue that does not arise
for mixed logit. See Train’s book (below) for a clear discussion of this.
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Software

Virtually all statistics packages can estimate the standard multinomial
logit model, or the binary probit model.
NLOGIT (a superset of LIMDEP), a commercial program only for
Windows, can estimate all the discrete choice models mentioned here
(plus some others not mentioned). It is also a full featured general
econometrics package, and very convenient to use.
In the free R system (available for most operating systems) you use
add-on packages (also free) to estimate specific models. For the
models discussed here:

the mlogit package can estimate the mixed-logit model in both
cross-section and panel data form. It can also estimate other
T1EV-based models, including nested logit and heteroskedastic logit.
the mnp package can estimate the multinomial probit model.
packages exist for most other moderately well-known statistical
procedures (including spatial statistics, which is not supported in
LIMDEP/NLOGIT).
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