1.3 Exercises 3: Date 3.5.2013

1. Derive the relation between the F-statistic and the coefficient of determination.
2. Show that $e^{\prime} e=y^{\prime} M y=u^{\prime} M u$ with $M=I-X\left(X^{\prime} X\right)^{-1} X^{\prime}, e=y-X \hat{\beta}$ the vector of residuals of the regression $y=X \beta+u$ with β the unknown parameter vector, u the unknown error vector and $\hat{\beta}$ the least squares estimator.
3. Let $y=X \beta+u, \hat{y}=X \hat{\beta}$ and $e=y-X \hat{\beta}=y-\hat{y}$, with $\hat{\beta}=\left(X^{\prime} X\right)^{-1} X^{\prime} y$ the least squares estimator. Show that the decomposition of the total sum of squares $y^{\prime} y$ into the explained sum of squares $\hat{y}^{\prime} \hat{y}$ and the residual sum of squares $e^{\prime} e$ holds.
4. Use the data file cps78.xls Read the information in "Info". Estimate a multiple linear regression model

$$
\begin{equation*}
W A G E_{i}=\beta_{0}+\beta_{1} A G E_{i}+\beta_{2} E D_{i}+\beta_{3} F E_{i}+\beta_{4} U N I O N_{i}+u_{i} \tag{6}
\end{equation*}
$$

where $E D$ stands for years of formal education, $F E$ for female, and $U N I O N$ for union membership. Which values do you obtain for $\left(\hat{\beta}_{0}, \widehat{\beta}_{1}, \hat{\beta}_{2}, \hat{\beta}_{3}, \hat{\beta}_{4}\right)$? How do you interpret the estimated coefficients? For each coefficient find out if it is significantly different from zero (95% level).
Plot the residuals against the years of education ($E D$). Group the residuals e_{i} according to the years of education and estimate the variance of the u_{i} within each group by computing the sample variance of the e_{i} in each group. Does the assumption of a constant variance σ^{2} for all u_{i} seem justified?
5. Estimate the regression as in (6), but replace the dependent variable $W A G E_{i}$ by $L N W A G E_{i}$.

$$
\begin{equation*}
L N W A G E_{i}=\beta_{0}+\beta_{1} A G E_{i}+\beta_{2} E D_{i}+\beta_{3} F E_{i}+\beta_{4} U N I O N_{i}+u_{i} \tag{7}
\end{equation*}
$$

This model explains obviously the natural logarithm of $W A G E$. Which values do you obtain now for $\left(\hat{\beta}_{0}, \hat{\beta}_{1}, \hat{\beta}_{2}, \hat{\beta}_{3}, \hat{\beta}_{4}\right)$? How do you now interpret the estimated coefficients in this equation? Repeat the estimation of group variances as in the previous exercise. Do you notice a difference?
6. Test in equation (7) if all slope coefficients simultaneously are different from zero against the alternative that at least one coefficient is non-zero.
7. Test if women earn significantly less than men. Formulate the null- and the alternative hypothesis and use a type one error probability of $\alpha=5 \%$.
8. Investigate in (7) how much hourly wage increase somebody would get on average for one more year of formal education. Calculate a 95%-confidence interval and interpret the result.
9. Test (at the 95% level) in the estimated equation (7) if union members receive a higher wage than non-union members.
10. Someone might argue that years of experience should also play a role for the personal wage. Add the variable $E X$ to the model (7) and estimate the revised equation to find out about this issue. Test the coefficients against zero. Do you encounter any problem?

