1.5 Exercises 5: Date 26.6.2015

1. Derive the mean $\mu=E\left(y_{t}\right)$ and the variance $\gamma_{0}=E\left(y_{t}-\mu\right)^{2}$ and the autocovariances $\gamma_{j}=E\left[\left(y_{t}-\mu\right)\left(y_{t-j}-\mu\right)\right]$ for $j=1,2,3$, of the process $y_{t}=0.8 y_{t-1}+u_{t}$. (See lecture notes p.55)
2. Generate 100 observations of an independent normal random variable $u_{t} \sim$ $N(0,1)$ and define a new random variable $y_{t}=0.8 y_{t-1}+u_{t}$. Use an initial value of $y_{0}=1$. Produce a time plot of the series y_{t}. Is this a stationary process?
3. Use the generated series to calculate the mean, the variance and the autocorrelation function of y_{t} up to third order using the sample autocorrelation coefficients

$$
\begin{equation*}
r_{k}=\frac{\sum_{t=k+1}^{T}\left(y_{t}-\bar{y}\right)\left(y_{t-k}-\bar{y}\right)}{\sum_{t=1}^{T}\left(y_{t}-\bar{y}\right)^{2}} \tag{11}
\end{equation*}
$$

For the mean always use the sample mean $\bar{y}=\frac{1}{T} \sum_{t=1}^{T} y_{t}$. Describe the pattern of the estimated ACF. Compare the property of the ACF to your results of question 1.
4. Calculate the PACF for the y_{t} series by running three regressions $y_{t}=\beta_{0}+$ $\beta_{1} y_{t-1}+\ldots+\beta_{p} y_{t-p}+u_{t}$ for $p=1, \ldots, 3$. The sequence of regression coefficients of variable y_{t-p} for $p=1, \ldots, 3$ is the PACF.
5. Calculate the PACF for the y_{t} series using the Yule Walker equations for $p=1, \ldots 3$ and compare the result with your answer to question 4 . What is the theoretical PACF of the process $y_{t}=0.8 y_{t-1}+u_{t}$.
6. What kind of information can be obtained from the estimated ACF and PACF that would be relevant for the specification of a time series model?
7. Derive the mean, the variance and the autocovariance function of order up to 3 of the process $y_{t}=0.5+u_{t}+0.6 u_{t-1}$. Is this process stationary?
8. Generate 100 observations of an independent normal random variable $u_{t} \sim$ $N(0,1)$ and define a new random variable $y_{t}=0.5+u_{t}+0.6 u_{t-1}$. Use $u_{0}=0.1$ as starting value. Calculate the ACF of this process and compare with your answer to question 7 .
9. Produce a vector of 100 realisations of independent normal random variables $u_{t} \sim N(0,1)$. Compute the values of variable x_{t} as $x_{t}=2+x_{t-1}+u_{t}$ for $t=1, \ldots, 100$ with a given initial value $x_{0}=5$. Produce another vector of 100 realisations of independent normal random variables $\varepsilon_{t} \sim N(0,1)$. (Check that the random number generator generates different values than before). Compute the time series $y_{t}=1+y_{t-1}+\varepsilon_{t}$ with initial value $y_{0}=2$. Then estimate the model with the 100 observations of x_{t} and y_{t}

$$
\begin{equation*}
y_{t}=a+b x_{t}+\xi_{t} \tag{12}
\end{equation*}
$$

by the least squares method. Compute R^{2} and test the parameter b against zero. How do you interpret the result?
10. If variables x_{t} und y_{t} are really dependent on each other this should also hold for the differences of these variables. Thus, estimate the model in differences

$$
\begin{equation*}
y_{t}-y_{t-1}=c+d\left(x_{t}-x_{t-1}\right)+\zeta_{t} \tag{13}
\end{equation*}
$$

by least squares What is your result? Test parameter d against zero. How do you explain this result?

