11. (Costs allocation problem:) Three airlines plan to build a new airstrip. The airlines operate planes with different sizes. The first airline operates smaller planes and a shorter airstrip with construction costs of $c_{1}=10 M$ would be sufficient. The second airline needs at least a medium length airstrip, which costs $c_{i}=18 M$. The third airline operates huge jumbo jets and has a need of a really long airstrip, which costs $c_{i}=33 M$.
If airlines form a coalition, they will build a long enough airstrip so that all their planes can land. If there isn't any agreement, each airline builds its own airstrip.

Formulate a coalition game and compute the Shapley values in order to decide how they should finance the construction in case of a grand coalition (Hint: cost function $c(S)=\max _{i \in S} c_{i}$. Excel sheet discussed in the lecture is available at TISS.)
12. A player who is in every winning coalition in a simple game is called a veto player.

- $\mathrm{N}=\{1,2,3\}$ and let $v(\{1,2,3\})=1$ and $v(S)=0$ for all other coalitions S. This is a simple game and in this game every player is a veto player. How does the core of this coalition game looks like?
- $\mathrm{N}=\{1,2,3\}$ and let $v(\{1,2,3\})=v(\{1,2\})=v(\{1,3\})=v(\{2,3\})=$ 1 , and $v(\{1\})=v(\{2\})=v(\{3\})=0$. This is a simple game and in this game there are no veto players. How does the core of this coalition game looks like?
- $\mathrm{N}=\{1,2,3\}$ and let $v(\{1,2,3\})=v(\{1,2\})=v(\{1,3\})=1$, and $v(\{2,3\})=v(\{1\})=v(\{2\})=v(\{3\})=0$. This is a simple game and Player 1 is the only veto player. How does the core of this coalition game looks like?

13. Prove: A player who is in every winning coalition in a simple game is called a veto player.A simple game has a non-empty core if and only it has veto players.
14. Hillary and Barack share 1000USD according to the following rules. First Hillary suggests an amount $x \geq 0$; this is the amount she wants. Barack, having heard Hilary's suggestion, may propose an amount $y \geq 0$. If the sum of x and y is greater than 1000USD, then the payoff of the game is equal to $(0,0)$. Otherwise, Hillary receives the desired amount x and Barack the desired amount y.

- Draw a suitable game tree for this set-up.
- Alternatively, formulate this division problem as a bargaining game (F, d).

Now Angela plays with Donald the same game as Hillary and Barack.However, Angela has to tax her profits with 50% income tax. Donald does not have to pay any income tax due to losses in other businesses. Formulate this division problem as a bargaining game (F, d).
15. Two players have to agree on the devision of one unit of a perfectly divisible good, say a liter of wine. If they reach an agreement, say (α, β) where $\alpha, \beta \geq 0$ and $\alpha+\beta \leq 1$, then they split up the one unit accordingly to this agreement; otherwise, they both receive nothing (disagreement point $(0,0))$. The players have preferences for the good, described by utility functions $u_{i}(\cdot)$.
Assume that Player I's utility function is $u_{1}(\alpha)=\alpha$ and Player II's utility function is $u_{2}(\beta)=2 \beta-\beta^{2}$. Formulate the optimization problem in division of the good (variable α) and - alternatively - formulate the Nash bargaining problem (optimization in utilities).

