25. In this game in a strategic setting, players 1 and 2 play according to the matrix shown. However, player 1's payoff number x is private information. Player 2 knows only that $\mathrm{x}=12$ with probability $\frac{2}{3}$ and $x=0$ with probability $\frac{1}{3}$.

$$
\left.\begin{array}{l}
\\
U \\
D
\end{array} \begin{array}{cc}
L & R \\
(x, 9 & 3,6 \\
6,0 & 6,9
\end{array}\right)
$$

Note that the matrix pictured is not the true normal form of the game, because player 1 observes x before making his decision. Player 1 observes nature's action before selecting between U and D, yet player 2 must make her choice without observing player 1's type or action.

- Draw the game tree
- Determine the information sets
- Compute for all 4 pure strategies of player 1 beliefs for player 2
- and picture the normal form of this game
- Determine the pure Nash equilibrium
- Is this Nash equilibrium perfect Bayesian?

26. The beer-quiche game. Consider the following signaling game. Player 1 is either "weak" or "strong". This is determined by a choice move, resulting in player 1 being "weak" with with probability $\frac{1}{10}$. Player 1 is informed about the outcome of this chance move but player 2 is not; but the probabilities of either type of player 1 are common knowledge among the two players. Player 1 has two actions: either have quiche (Q) or have beer (B) for breakfast. Player 2 observes the breakfast of player 1 and then decides to duel (D) or not to duel (N) with player 1. The payoffs are as follows. If player 1 is weak and eats quiche then D and N give him payoffs of 1 and 3 , respectively, if he is weak and drinks beer, the these payoffs are 0 and 2, respectively. If player 1 is strong, then the payoffs are 0 and 2 from D and N , respectively, if he eats quiche; and 1 and 3 from D and N , respectively, if he drinks beer. Player 2 has payoff 0 from not dueling, payoff 1 from dueling with the weak player 1 , and payoff -1 from dueling with the strong player 1.

- Draw the game tree
- Compute all pure strategy Nash equilibria of the game
- Find out which of these Nash equilibria are perfect Bayesian equilbria
- Give the corresponding beliefs and determine whether these equilibria are pooling or separating.

27. Compute the evolutionary stable strategies for the following payoff matrix

$$
\left.A=\begin{array}{c}
\\
F \\
B
\end{array} \begin{array}{cc}
F & B \\
2 & 0 \\
0 & 1
\end{array}\right)
$$

28. Determine the replicator dynamics for the Rock-Paper-Scissors Game

	Rock	Paper	Scissors
Rock			
Paper			
Scissors			

a \& 1 \& 0 \\
0 \& a \& 1\end{array}\right)\)
29. For every real number a the 3 -person TU-game v_{a} is given by $v_{a}\{i\}=$ $0, i=1,2,3, v_{a}\{1,2\}=3, v_{a}\{1,3\}=2, v_{a}\{2,3\}=1$, and $v_{a}\{1,2,3\}=a$.

- Determine the minimal value of a so that the TU-game v_{a} has a nonempty core.
- Calculate the Shapley value of v_{a} for $a=6$.
- Determine the minimal value of a so that the Shapley value of v_{a} is a core distribution (allocation).

Please note and remember your working time for the preparation of example 25 to 29 .

