Game-theoretic Modeling

ÜBUNG
WS 2019
32. Continue with the game in Exercise 31.

- (trick question; Fangfrage) Determine the Bayes consistent belief $(\alpha, 1-\alpha)$ for the information set of player 1 .
- If we denote the Bayes consistent belief for the information set of player 2 by $(\beta, 1-\beta)$, what is a rational decision for player 2 ?
- Assume a mixed strategy $\left(\frac{4}{5}, \frac{1}{5}\right)$ for player 1. Compute a Bayes consistent belief value β for the information set of player 2.
- We have already verified that $W Y$ is subgame perfect. Is this strategy profile a perfect Bayesian equilibrium?

33. In this game in a strategic setting, players 1 and 2 play according to the matrix shown. However, player 1's payoff number x is private information. Player 2 knows only that $\mathrm{x}=12$ with probability $\frac{2}{3}$ and $x=0$ with probability $\frac{1}{3}$.

$$
\begin{gathered}
\\
U \\
D
\end{gathered} \begin{array}{cc}
L & R \\
\left(\begin{array}{cc}
x, 9 & 3,6 \\
6,0 & 6,9
\end{array}\right)
\end{array}
$$

Note that the matrix pictured is not the true normal form of the game, because player 1 observes x before making his decision. Player 1 observes nature's action before selecting between U and D, yet player 2 must make her choice without observing player 1's type or action.

- Draw the game tree
- Determine the information sets
- Compute for all 4 pure strategies of player 1 beliefs for player 2
- and picture the normal form of this game
- Determine the pure Nash equilibrium
- Is this Nash equilibrium perfect Bayesian?

34. The milk-whisky game. Consider the following signaling game. In a saloon, a stranger (player 1) is sitting at the bar; the stranger is either "weak" or "strong". In the saloon, the local hero (player 2) annouces that in the past strangers were "weak" with probability $\frac{1}{10}$. Player 1 knows if he is weak or not - player 2 does not; but due to the announcement the probabilities of either type of player 1 are common knowledge among the two players. Player 1 has two actions: either have milk (M) or have whisky (W) for breakfast. Player 2 observes the breakfast of player 1 and then decides to duel (D) or not to duel (N) with player 1. The payoffs
are as follows. If player 1 is weak and drinks milk then D and N give him payoffs of 1 and 3 , respectively, if he is weak and drinks whisky, his payoffs are 0 and 2 , respectively. If player 1 is strong, then the payoffs are 0 and 2 from D and N , respectively, if he drinks milk; and 1 and 3 from D and N , respectively, if he drinks whisky. Player 2 has payoff 0 from not dueling, payoff 1 from dueling with the weak player 1 , and payoff -1 from dueling with the strong player 1 .

- Draw the game tree
- Compute all pure strategy Nash equilibria of the game
- Find out which of these Nash equilibria are perfect Bayesian equilbria
- Give the corresponding beliefs and determine whether these equilibria are pooling or separating.

