Übungen zur Vorlesung Einführung in die Numerik von Differentialgleichungen

Serie 10

Aufgabe 37*. Eine Funktion $f: \mathbb{R} \times \mathbb{C}^n \to \mathbb{C}^n$ erfüllt die einseite Lipschitzbedingung mit Konstante L falls

$$\operatorname{Re} \langle f(t,y) - f(t,\widehat{y}), y - \widehat{y} \rangle \le L \|y - \widehat{y}\|_2^2 \qquad \forall (t,y), (t,\widehat{y}) \in \mathbb{R} \times \mathbb{C}^n.$$

Ist f stetig, und erfüllen y, \hat{y} die Gleichungen y' = f(t, y), $\hat{y}' = f(t, \hat{y})$ für $t \ge t_0$, so folgt

$$||y(t) - \widehat{y}(t)||_2 \le ||y(t_0) - \widehat{y}(t_0)||_2 e^{L(t-t_0)}, \quad t \ge t_0.$$

Aufgabe 38. Falls die einseitige Lipschitzkonstante L=0 ist, heißt die ODE *nicht-expansiv*. Ein RK-Verfahren heißt B-stabil, falls sich die Nicht-Expansivität ins Diskrete vererbt, d.h. für jeden Schritt $h \geq 0$ und Anfangsdaten y_0 , \hat{y}_0 gilt für die entsprechenden Werte y_1 und \hat{y}_1 nach einem Schritt die Bedingung $||y_1 - \hat{y}_1||_2 \leq ||y_0 - \hat{y}_0||_2$. Man zeige, dass B-stabile RK-Verfahren A-stabil sind.

Aufgabe 39*. Man zeige, dass Gauß-Verfahren B-stabil sind.

Hinweis. Imitieren Sie den Beweis von Aufgabe 37 und nutzen Sie, dass Gauß-Verfahren Kollokationsverfahren mit s Knoten sind und dass die induzierte Quadratur vom Exaktheitsgrad 2s-1 ist.

Aufgabe 40. Gegeben Sei ein implizites s-stufiges Runge-Kutta-Verfahren mit Daten $b, c \in \mathbb{R}^s$ und $A \in \mathbb{R}^{s \times s}$. Anstatt in einem Schritt des Verfahrens den impliziten Stufenvektor $k \in \mathbb{R}^n$ exakt zu berechnen (als Limes der Fixpunktiteration), führen wir nur m Schritte der Fixpunktiteration durch. Mit dem Startwert $k^{(0)} := f(x_\ell, y_\ell)$ erhalten wir also eine Approximation $k := k^{(m)} \in \mathbb{R}^s$ von k. Dieses Vorgehen definiert das Einschrittverfahren

$$y_{\ell+1} = y_{\ell} + h \sum_{j=1}^{s} b_j \widetilde{k}_j$$
 für $\ell \in \mathbb{N}_0$.

Ist dieses Verfahren A-stabil?

Aufgabe 41. Wir betrachten autonome Differentialgleichungen y' = f(y). Betrachten Sie das linear implizite Eulerverfahren: $y_{\ell+1} = y_{\ell} + hk_1$, wobei k_1 die Lösung von $(1 - hJ)k_1 = f(y_{\ell})$

mit der Jacobi-Matrix $J = D_y f(y_\ell)$ ist. Zeigen Sie, dass das linear implizite Eulerverfahren Konsistenzordnung 1 hat. Ist das Verfahren A-stabil? Was ist die Stabilitätsfunktion?

Programmieraufgabe 14. Implementieren Sie eine Matlab-Funktion

die das implizite Euler-Verfahren zur Lösung des Anfangswertproblems y' = f(t, y) mit $y(t_1) = y_0$ realisiert. Dabei ist $t \in \mathbb{R}^n$ ein Zeilenvektor mit den Stützstellen des Verfahrens, $y_0 \in \mathbb{R}^d$ ist ein Spaltenvektor mit dem Anfangswert und f und fprime sind Funktionshandles für die Funktion f(x, y) sowie deren Jacobi-Matrix $D_y f(x, y)$. In jedem Schritt werde das implizite Gleichungssystem zur Berechnung von k_1 mit einem Newton-Verfahren realisiert. Man teste die Funktion anhand der Van-der-Pol-Gleichung aus Programmieraufgabe 10.

Abgabe der schriftlichen Aufgaben (mit Stern) bis spätestens Dienstag 30.05.2006, 12:00 Uhr, im Sekretariat von Frau Kovalj (4. Stock, grün). Abgabe der Programmieraufgabe bis spätestens Mittwoch 31.05.2006, 12:00 Uhr, per Mail an dirk.praetorius@tuwien.ac.at (Betreff: Numerik UE Matlab). Die mündlichen Aufgaben sind zur Übung am 31.05.2006 vorzubereiten.