Übungen zur Vorlesung Einführung in Scientific Computing

Serie 6

Aufgabe 6.1. Betrachten Sie die Gleichung

$$-u'' + u' + u = f \quad \text{auf } (0,1),$$

$$u(0) = 0 = u(1).$$
 (1)

Statt \mathcal{P}^1 -FEM wollen wir nun \mathcal{P}^2 -FEM verwenden. Sei \mathcal{T}_h ein Gitter auf (0,1). Als Ansatzraum verwenden wir $\mathcal{S}^2(\mathcal{T}_h) := \mathcal{P}^2(\mathcal{T}_h) \cap C(0,1)$, also stückweise quadratische, global stetige Polynome von Grad zwei. Ist $\mathcal{S}^2(\mathcal{T}_h)$ ein Teilraum des $H^1(0,1)$? Welche Dimension hat $\mathcal{S}^2(\mathcal{T}_h)$? Geben Sie eine Basis des $\mathcal{S}^2(\mathcal{T}_h)$ an, die sich zur Berechnung der FEM Matrizen eignet.

Aufgabe 6.2. Stellen Sie die schwache Formulierung von (1) auf und berechnen Sie die Einträge der Galerkin-Matrizen für die Basis aus Aufgabe 6.1

Aufgabe 6.3. Implementieren Sie \mathcal{P}^2 -FEM für die Gleichung (1). Wie kann man die Implementierung auf Korrektheit prüfen?

Aufgabe 6.4. Testen Sie Ihre Implementierung an der Funktion u(x) = x(1-x). Berechnen Sie den H^1 -Fehler und auch den H^2 -Fehler der Galerkin-Approximationen auf uniformen Gittern. Welche Konvergenzrate erwarten Sie, welche beobachten Sie.