2. Übung Mathematische Statistik WS15

In the following problems, use level $\alpha=0.05$.

1. For a sample of size twenty from an alternative distribution, calculate the uniformly optimal test for $H_{0}: p \leq 0.4$ against $H_{1}: p>0.4$.
2. For a sample of size twenty from an alternative distribution, calculate the uniformly optimal test for $H_{0}: p \geq 0.4$ against $H_{1}: p<0.4$.
3. For a sample of size twenty from an alternative distribution, calculate the uniformly optimal unbiased test for $H_{0}: p=0.4$ against $H_{1}: p \neq 0.4$.
4. For a sample of size twenty from an alternative distribution, calculate the likelihood ratio test for $H_{0}: p=0.4$ against $H_{1}: p>0.4$.
5. For a sample of size twenty from an alternative distribution, calculate a randomized test for $H_{0}: p \leq 0.4$ against $H_{1}: p>0.4$ with symmetric probabilities (i.e., the probability that $\hat{p}>0.4$ and H_{0} is rejected equals $\alpha / 2)$.
6. For a sample from an alternative distribution and for large sample size n, the distribution of \hat{p} can be approximated by a normal distribution.
(a) Use this fact to construct an approximate test for the two-sided alternative.
(b) Use the above and the relationship between tests and confidence intervals to construct an approximate confidence interval for p.
7. In a sample of 200 products, 15 defective items were found. The manufacturer claims that the percentage of defective items is at most 5%. Test at the 5% level.
8. A sample of 60 bottles of beer showed a mean content of 470 ccm with a sample variance of 2000 . Assuming a normal distribution, test $H_{0}: \mu=$ 500.
9. The lifetime of lightbulbs is supposed to be exponentially distributed. A certain brand is claimed to have an expected lifetime of 2000 hours. A sample showed the following lifetimes:
90017602140205028202200300060015001980
Test at the 5% level.
10. For the following sample from a normal distribution
1.10 .71 .61 .30 .81 .40 .70 .61 .81 .41 .3
test $H_{0}: \mu=1.0$ against the two-sided alternative, if $\sigma^{2}=0.5$
11. Do the previous problem for unknown variance.
12. For the sample in problem 10 , test whether $\sigma^{2}=0.5(\alpha=0.1)$.
