Multivariate Statistics: Exercise 1

October 16, 2014

Introduction:

1) When \boldsymbol{A}^{-1} and \boldsymbol{B}^{-1} exist, prove each of the following:
a) $\left(\boldsymbol{A}^{\top}\right)^{-1}=\left(\boldsymbol{A}^{-1}\right)^{\top}$
b) $(\boldsymbol{A B})^{-1}=\boldsymbol{B}^{-1} \boldsymbol{A}^{-1}$
2) Prove that

$$
\boldsymbol{\Gamma} \boldsymbol{A} \boldsymbol{\Gamma}^{\top}=\sum_{i=1}^{p} a_{i} \boldsymbol{\gamma}_{i} \boldsymbol{\gamma}_{i}^{\top}
$$

where $\boldsymbol{\Gamma}=\left(\boldsymbol{\gamma}_{1}, \boldsymbol{\gamma}_{2}, \ldots, \boldsymbol{\gamma}_{p}\right), \boldsymbol{\Gamma}^{\boldsymbol{\top}}=\boldsymbol{\Gamma}^{-1}$ and $\boldsymbol{A}=\operatorname{Diag}\left(a_{1}, a_{2}, \ldots, a_{p}\right)$ (cf. lecture notes, Theorem 1.4.3).
3) Show that the matrix

$$
\boldsymbol{\Sigma}^{1 / 2}=\boldsymbol{\Gamma} \boldsymbol{A}^{1 / 2} \boldsymbol{\Gamma}^{\top}=\sum_{i=1}^{p} \sqrt{a_{i}} \boldsymbol{\gamma}_{i} \boldsymbol{\gamma}_{i}^{\top}
$$

has the following properties:
a) $\left(\boldsymbol{\Sigma}^{1 / 2}\right)^{\top}=\boldsymbol{\Sigma}^{1 / 2}$.
b) $\Sigma^{1 / 2} \Sigma^{1 / 2}=\Sigma$.
c) $\left(\boldsymbol{\Sigma}^{1 / 2}\right)^{-1}=\sum_{i=1}^{p} \frac{1}{\sqrt{a_{i}}} \boldsymbol{\gamma}_{i} \boldsymbol{\gamma}_{i}^{\top}=\boldsymbol{\Gamma} \boldsymbol{A}^{-1 / 2} \boldsymbol{\Gamma}^{\top}$ where $\boldsymbol{A}^{-1 / 2}$ is a diagonal matrix with $1 / \sqrt{a_{i}}$ as the i th diagonal element.
d) $\boldsymbol{\Sigma}^{1 / 2} \boldsymbol{\Sigma}^{-1 / 2}=\boldsymbol{\Sigma}^{-1 / 2} \boldsymbol{\Sigma}^{1 / 2}=\boldsymbol{I}$, and $\boldsymbol{\Sigma}^{-1 / 2} \boldsymbol{\Sigma}^{-1 / 2}=\boldsymbol{\Sigma}^{-1}$, where $\boldsymbol{\Sigma}^{-1 / 2}=\left(\boldsymbol{\Sigma}^{1 / 2}\right)^{-1}$.
4) Show that $\operatorname{Cov}(\boldsymbol{A x}, \boldsymbol{B y})=\boldsymbol{A} \operatorname{Cov}(\boldsymbol{x}, \boldsymbol{y}) \boldsymbol{B}^{\top}$
(cf. lecture notes, Equation (1.22)).
5) Prove: For independent random variables $\boldsymbol{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right)^{\top}$ with $E\left(x_{i}\right)=\mu_{i}$ and $\operatorname{Var}\left(x_{i}\right)=\sigma^{2}$ for $i=1, \ldots, n$, and a symmetric matrix \boldsymbol{A} we have:

$$
E\left(\boldsymbol{x}^{\top} \boldsymbol{A} \boldsymbol{x}\right)=\boldsymbol{\mu}^{\top} \boldsymbol{A} \boldsymbol{\mu}+\sigma^{2} \operatorname{tr}(\boldsymbol{A})
$$

where $\boldsymbol{\mu}^{\top}=\left(\mu_{1}, \mu_{2}, \ldots, \mu_{n}\right)$, and tr denotes the trace of a matrix.

