Chapter 1

Linear methods in \mathbf{R}

1.1 Least Squares (LS) regression in R

1.1.1 Parameter estimation

Figure 1.1: Multiple regression with simulated data: regression of y on three x-variables

- Generation of the data

```
>set.seed(123)
>x <- matrix(runif(60), ncol = 3)
>y <- x %*% c(1, 2, 0) + 0.1 * rnorm(20)
>colnames(x) = paste("x", 1:3, sep = "")
>d = data.frame(x, y = y)
>plot(d)
```

- Model using only a constant term

```
> lm0<-lm(y~1, data = d)
lmO
Call:
lm(formula = y ~ 1, data = d)
```

```
Coefficients
(Intercept)
    1.72
```

LS regression is computed by $\operatorname{lm}()$. The estimated value of the intercept is $\beta_{0}=1.72$

- Model with one explanatory variable

```
> lm1<-lm(y~x1, data = d)
> lm1
Call:
lm(formula = y ~ x1, data = d)
Coefficients:
(Intercept) x1
    0.9157 1.4600
```

- Fit of a full model

```
> lm3<-lm(y~x1+x2+x3, data = d)
> 1m3
Call:
lm(formula = y ~ x1 + x2 + x3, data = d)
Coefficients
\begin{tabular}{rrrr} 
(Intercept) & x1 & x2 & x3 \\
0.09585 & 0.91834 & 1.99804 & -0.08761
\end{tabular}
```


1.1.2 Tests and confidence intervals

- Testing the coefficients for significance

```
> summary(lm3)
Call:
lm(formula = y ~ x1 + x2 + x3, data = d)
Residuals:
    Min 1Q Median 3Q Max
-0.11566 -0.06133-0.01260 0.06785 0.18004
Coefficients:
        Estimate Std. Error t value Pr (>|t|)
(Intercept) 0.09585 0.08200 1.169 0.260
x1 0.91834 0.06623 13.867 2.47e-10 ***
x2 1.99804 0.08453 23.637 7.18e-14 ***
x3 -0.08761 0.09060 -0.967 0.348
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ', 1
Residual standard error: 0.08621 on 16 degrees of freedom
Multiple R-squared: 0.9882, Adjusted R-squared: 0.986
F-statistic: 446.5 on 3 and 16 DF, p-value: 1.251e-15
```

- The t statistic of $x 1$ and $x 2$ is highly significant and the p-value of each variable is below 0.05 . Therefore, both variables have a great impact on the explanation of
the regressor and the null hypothesis can be rejected. The regressor $x 3$ provides no significant additional contribution.
- The model provides a good fit (R squared), 98.82% of the variance of y can be explained by the model. The value 98.6% of the adjusted R squared is very high as well.
- > qf(0.95, 3, 16)
[1] 3.238872
The value of the " F statistic" of 446.5 is larger than the F quantile $F_{3,16 ; 0.95}=3.24$, therefore the null hypothesis $\beta_{i}=0, \forall i=1, \ldots, p$ can be rejected. This could also be concluded by the p-value that is close to 0 .
- The test statistic from above can be used for the calculation of a confidence interval for $\hat{\beta}_{j}$. From the approximation of the 95% confidence interval, we obtain for $\hat{\beta}_{1}$ the interval

$$
0.91834 \pm 2 * 0.06623=[0.78,1.06]
$$

and for $\hat{\beta}_{3}$

$$
-0.08761 \pm 2 * 0.09060=[-0.27,0.09]
$$

The interval for $\hat{\beta}_{1}$ does not include zero, and thus the null hypothesis can be rejected at a 95% level. The interval for $\hat{\beta}_{3}$ includes zero, which confirms the acceptance of the null hypothesis due to a p-value of 0.348 .

1.2 Variable selection in R

1.2.1 Model comparison with anova()

```
> anova(lm3)
Analysis of Variance Table
Response: y
    Df Sum Sq Mean Sq F value Pr (>F)
x1 1 3.9799 3.9799 535.4639 9.991e-14 ***
x2 1 5.9693 5.9693 803.1073 4.199e-15 ***
x3 1 0.0070 0.0070 0.9351 0.3479
Residuals 16 0.1189 0.0074
Signif. codes: 0 '***' 0.001 '**' 0.01 '*'0.05 '.' 0.1 ' ' 1
```

An F-test is computed for every additional explanatory variable, starting with the empty model and following the order of the formula. Regressor x3 does not improve the fit of the model and can be left out.

```
> lm2<-lm( }\mp@subsup{\textrm{y}}{~}{~}\textrm{x}1+\textrm{x}2, data=d
> anova(lm0, lm1, lm2, lm3)
Analysis of Variance Table
Model 1: y ~ 1
Model 2: y ~ x1
Model 3: y ~ x1 + x2
Model 4: y ~ x1 + x2 + x3
    Res.Df RSS Df Sum of Sq F Pr (>F)
```

```
    19 10.0751
    18 6.0951 1 3.9799 535.4639 9.991e-14 ***
    17 0.1259 1 5.9693 803.1073 4.199e-15 ***
    16}00.1189 1 0.0070 0.9351 0.3479 
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Here several nested models are compared in the specified order. This allows simultaneous testing of the significance of more than one parameter. Here, again, model $\operatorname{lm} 3$ does not improve the fit.

1.2.2 Body fat data

- Scanning of the data and explanation of the variables

```
> library("UsingR")
> data(fat)
> attach(fat)
> fat$body.fat[fat$body.fat == 0] <- NA
# exclude observations that are not used for the analysis
> fat <- fat[, -cbind(1, 3, 4, 9)]
# exclude a sample with wrong body height
> fat <- fat[-42, ]
# transform the body height in centimeter
> fat[, 4] <- fat[, 4] * 2.54
```

The data set "fat" consists of 15 physical measurements of 251 men. The data can be found in the library (UsingR).

- body.fat: percentage of body-fat calculated by Brozek's equation
- age: age in years
- weight: weight (in pounds)
- height: height (in inches)
- BMI: adiposity index
- neck: neck circumference (cm)
- chest: chest circumference (cm)
- abdomen: abdomen circumference (cm)
- hip: hip circumference (cm)
- thigh: thigh circumference (cm)
- knee: knee circumference (cm)
- ankle: ankle circumference (cm)
- bicep: extended biceps circumference (cm)
- forearm: forearm circumference (cm)
- wrist: wrist circumference (cm)

To measure the percentage of body-fat in the body, an extensive (and expensive) underwater technique has to be performed. The goal here is to establish a model which allows the prediction of the percentage of body-fat with easily measurable and collectible variables in order to avoid the underwater procedure. Nowadays, a new, very effortless method called bio-impedance analysis provides a reliable method to determine the body-fat percentage.

1.2.3 Full model

```
> model.lm<-lm(body.fat~., data = fat)
> summary(model.lm)
Call:
lm(formula = body.fat ~ ., data = fat)
Residuals:
    Min 1Q Median 3Q Max
llllll
Coefficients:
    Estimate Std. Error t value Pr(>|t|)
(Intercept) -44.91075 36.67739 -1.224 0.22200
age 0.05740 0.03004 1.911 0.05725.
weight 
height }00.17192 0.20001 0.860 0.39089 $ llllll
BMI 0.75340 0.73339 1.027 0.30534
neck -0.42594 0.21857 -1.949 0.05251.
chest -0.05969 0.09907 -0.603 0.54740
abdomen 0.87126 0.08569 10.168 < 2e-16 ***
hip -0.22543 0.13796 -1.634 0.10359
thigh 0.21780 0.13660 1.594 0.11220
knee -0.01257 0.22965 -0.055 0.95639
ankle }0.12398 0.20837 0.595 0.55243 
bicep 
forearm 0.39166 0.18627 2.103 0.03656 *
wrist -1.49585 0.49586 -3.017 0.00284**
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1' ' 1
Residual standard error: 3.988 on 235 degrees of freedom
    (1 observation deleted due to missingness)
Multiple R-squared: 0.7432, Adjusted R-squared: 0.7279
F-statistic: 48.58 on 14 and 235 DF, p-value: < 2.2e-16
```

The coefficients age, neck, abdomen, forearm and wrist have very large t-values and very small p-values, therefore the null hypothesis $\beta_{i}=0$ should be rejected. Due to the very small p-value of the F-statistic, the null hypothesis $\beta_{i}=0, \forall i=1, \ldots, p$ should be rejected as well. With an R squared $=0.7432$ we can assume that the model provides a good fit.

1.2.4 Best subset regression with Leaps and Bound algorithm

```
> library(leaps)
> lm.regsubset<-regsubsets(body.fat~., data=fat, nbest = 1, nvmax = 8)
> summary(lm.regsubset)
Subset selection object
Call: regsubsets.formula(body.fat ~ ., data = fat, nbest = 1, nvmax = 8)
14 Variables (and intercept)
            Forced in Forced out
age FALSE FALSE
weight FALSE FALSE
height FALSE FALSE
BMI FALSE FALSE
neck FALSE FALSE
chest FALSE FALSE
abdomen FALSE FALSE
hip FALSE FALSE
thigh FALSE FALSE
knee FALSE FALSE
ankle FALSE FALSE
bicep FALSE FALSE
forearm FALSE FALSE
```

```
wrist FALSE FALSE
1 subsets of each size up to 8
Selection Algorithm: exhaustive
            age weight height BMI neck chest abdomen hip thigh knee ankle bicep
    ( 1 ) " " " " " " " " " " " " " " "*" 
    ( 1 ) " " "*" " " " " " " " " "*" " " " " " " " " " " "
```



```
    (1 ) " " "*" " " " " "*" " " "*" " " " " " " " " " " "
    (1 ) " " "*" " " " " "*" " " "*" " " " " " " " " "*"
```



```
    forearm wrist
    ( 1 ) " " " "
    (1 ) " " " "
    (1 ) " " "*"
    ( 1 ) "*" "*"
    ( 1 ) "*" "*"
    ( 1 ) "*" "*"
    (1) "*" "*"
    ( 1 ) "*" "*"
```

regsubsets() in library (leaps) provides the "best" model for different sizes of subsets. Here only one "best" model per subset size was considered. The ranking of the models is done using the BIC measure.

```
> lm.regsubset2<-regsubsets(body.fat~., data=fat, nbest = 2, nvmax = 8)
> plot(lm.regsubset2)
```


Figure 1.2: Model selection with leaps()

This plot shows the two best, by regsubsets() computed models with 1-8 regressors each. The BIC, coded in grey scale, does not improve after the fifth stage (starting from the bottom, see Figure 1.2). The optimal model can then be chosen from the models with "saturated" grey, and preferable that model is taken with the smallest number of variables.

1.2.5 Stepwise selection - automatic model search

- Stepwise selection with drop1()

```
> drop1(model.lm, test="F")
Single term deletions
Model:
body.fat ~ age + weight + height + BMI + neck + chest + abdomen +
    hip + thigh + knee + ankle + bicep + forearm + wrist
            Df Sum of Sq RSS AIC F value Pr(>F)
<none> 3738.3 706.23
age 1 58.08 3796.4 708.09 3.6511 0.057249
weight 1 41.32 3779.6 706.98 2.5974 0.108379
height 1
BMI 1 16.79 3755.1 705.35 1.0553 0.305339
neck 1 1 60.41 3798.7 708.24 3.7978 0.052509
chest 1 5.78 3744.1 704.62 0.3630 0.547401
abdomen 1 1644.60 5382.9 795.38 103.3844 < 2.2e-16 ***
hip 1 42.47 3780.8 707.06 2.6700 0.103595
thigh 1 40.44 3778.7 706.92 2.5419 0.112202
knee 1 1 0.05 3738.3 704.23 0.0030}00.95639
ankle 1 5.63 3743.9 704.61 0.3540}00.55242
bicep 1 16.62 3754.9 705.34 1.0451 0.307694
forearm 1 70.33 3808.6 708.89 4.4213 0.036558 *
wrist 1 144.76 3883.1 713.73 9.1002 0.002837 **
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ', 1
> summary(update(model.lm,. ~.-knee))
Call:
lm(formula = body.fat ~ age + weight + height + BMI + neck +
    chest + abdomen + hip + thigh + ankle + bicep + forearm +
    wrist, data = fat)
Residuals:
\begin{tabular}{rrrrr} 
Min & 1Q & Median & 3Q & Max \\
-10.0922 & -2.6545 & -0.1914 & 2.9011 & 9.2520
\end{tabular}
Coefficients
            Estimate Std. Error t value Pr(>|t|)
(Intercept) -45.01721 36.54833 -1.232 0.21928
\begin{tabular}{llllll} 
age & 0.05699 & 0.02907 & 1.961 & 0.05107
\end{tabular}
\begin{tabular}{llllll} 
weight & -0.16288 & 0.10014 & -1.627 & 0.10516
\end{tabular}
\begin{tabular}{lllll} 
height & 0.17148 & 0.19942 & 0.860 & 0.39072
\end{tabular}
\begin{tabular}{lllll} 
BMI & 0.75481 & 0.73139 & 1.032 & 0.30312
\end{tabular}
\begin{tabular}{lllll} 
neck & -0.42464 & 0.21682 & -1.959 & 0.05135
\end{tabular}
chest -0.05961 0.09885 -0.603 0.54704
abdomen 0.87123 0.08551 10.189 < 2e-16 ***
hip -0.22594 0.13735 -1.645 0.10132
thigh 0.21554 0.12999 1.658 0.09862.
ankle 0.12186 0.20432 0.596 0.55147
bicep 
forearm 0.39080 0.18520 2.110 0.03590 *
wrist -1.49797 0.49329 -3.037 0.00266 **
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 3.98 on 236 degrees of freedom
    (1 observation deleted due to missingness)
Multiple R-squared: 0.7432, Adjusted R-squared: 0.7291
F-statistic: 52.54 on 13 and 236 DF, p-value: < 2.2e-16
```

Elimination of the least significant variable, in this case knee is excluded from the model. The R squared (and adjusted R squared) do not change, the fit remains the same.

- Automatic model search with step()

```
>model.lmstep<-step(model.lm)
Start: AIC=706.23
body.fat ~ age + weight + height + BMI + neck + chest + abdomen +
```

	Df	Sum of Sq	RSS	AIC
- knee	1	0.04766	3738.3	704.2
ankle	1	5.6	3743.9	704.6
chest	1	5.8	3744.1	704.6
- height	1	11.8	3750.0	705.0
- bicep	1	16.6	3754.9	705.3
BMI	1	16.8	3755.1	705.4
<none>			3738.3	706.2
- thigh	1	40.4	3778.7	706.9
- weight	1	41.3	3779.6	707.0
- hip	1	42.5	3780.8	707.1
- age	1	58.1	3796.4	708.1
- neck	1	60.4	3798.7	708.2
- forearm	1	70.3	3808.6	708.9
wrist	1	144.8	3883.1	713.7
abdomen	1	1644.6	5382.9	795.4
$\begin{gathered} \text { Step: AIC } \\ \text { body.fat } \sim \\ \text { hip }+ \end{gathered}$	$\begin{gathered} \mathrm{C}=70 \\ \sim \\ \text { thig } \end{gathered}$	$\begin{aligned} & 4.23 \\ & \text { igh + weight } \\ & \text { + ankle } \end{aligned}$	+ heig + bic	$\begin{aligned} & \mathrm{h} t+\mathrm{BM} \\ & \mathrm{p}+\mathrm{for} \end{aligned}$
	Df	Sum of Sq	RSS	AIC
- ankle	1	5.6	3744.0	702.6
- chest	1	5.8	3744.1	702.6
- height	1	11.7	3750.1	703.0
- bicep	1	16.7	3755.1	703.4
- BMI	1	16.9	3755.2	703.4
<none>			3738.3	704.2
- weight	1	41.9	3780.3	705.0
- hip	1	42.9	3781.2	705.1
- thigh	1	43.6	3781.9	705.1
- neck	1	60.8	3799.1	706.3
- age	1	60.9	3799.3	706.3
- forearm	1	70.5	3808.9	706.9
- wrist	1	146.1	3884.4	711.8
- abdomen	1	1644.6	5382.9	793.4

Step: AIC=697.41
body.fat ~ age + weight + neck + abdomen + hip + thigh + forearm + wrist

	Df Sum of Sq	RSS	AIC	
<none>			3786.2	697.4
- hip	1	37.4	3823.6	697.9
- age	1	59.3	3845.5	699.3
- neck	1	61.2	3847.4	699.4
- weight	1	74.7	3860.9	700.3
- thigh	1	77.5	3863.7	700.5
- forearm	1	114.0	3900.2	702.8
- wrist	1	135.8	3922.1	704.2
- abdomen	1	2712.5	6498.7	830.5

Call:
lm(formula = body.fat ~ age + weight + neck + abdomen + hip + thigh + forearm + wrist, data $=$ fat)

Coefficients:

(Intercept)	age	weight	neck	abdomen	hip
-18.46826	0.05577	-0.08081	-0.41183	0.87775	-0.20063
thigh	forearm	wrist			
0.26719	0.46567	-1.39341			

step() calls add1() and drop1() as long as the AIC cannot be reduced further.

- Comparison of the models with anova()

```
> anova(model.lm, model.lm1,model.lmstep)
Analysis of Variance Table
Model 1: body.fat ~ age + weight + height + BMI + neck + chest + abdomen +
    hip + thigh + knee + ankle + bicep + forearm + wrist
Model 2: body.fat ~ age + weight + height + BMI + neck + chest + abdomen +
    hip + thigh + ankle + bicep + forearm + wrist
Model 3: body.fat ~ age + weight + neck + abdomen + hip + thigh + forearm +
    wrist
    Res.Df RSS Df Sum of Sq F Pr(>F)
        235 3738.3
        236 3738.3-1 -0.048 0.0030 0.9564
        241 3786.2 -5 -47.861 0.6017 0.6987
```

By using the smaller model model.lmstep no essential information is lost, therefore it can be used for the prediction instead of model.lm.

