BAYES - STATISTIK

http://www.statistik.tuwien.ac.at/lv-guide

BLATT 8 SOMMERSEMESTER 2012

- 43) Die a-priori Verteilung sei auf [0, K] beschränkt. Die Quantile $q_1 \leq \ldots \leq q_s$ zu den Wahrscheinlichkeiten $p_1 \leq \ldots \leq p_s$ seien festgelegt. Welche a-priori Verteilung besitzt maximale Entropie unter allen Verteilungen auf [0, K], die diese Quantile besitzen?
- 44) Es soll (numerisch) eine a-priori Verteilung $\pi(.)$ auf \mathbb{R}^+ mit maximaler Entropie bestimmt werden, die den Erwartungswert $\mu=2$ und den Median m=1 hat.
- **45)** Die folgenden Beobachtungen sind $N(\theta, 5)$ verteilt.

12.3 16.8 9.7 17.4 13.9 11.8 15.0 19.3

Die a-priori Verteilung für θ sei N(10,1). Man bestimme die Prädiktivverteilung und das 95%-Quantil dieser Verteilung (Value at Risk).

- 46) Man wiederhole die Bestimmung des *Value at Risk* aus Beispiel 45 unter der Bedingung, daß die Varianz unbekannt ist und als a-priori eine Normal-Gamma NG(10, 1, 1, 5) verwendet wird.
- 47) Für die Beobachtungen $X_i \sim N(\theta, \sigma_0^2)$ mit bekannter Varianz und a-priori Normalverteilung $\theta \sim N(m, d^2)$ soll die Randdichte m(D) bestimmt werden, wenn nur eine Beobachtung $D = (X_1)$ vorliegt.
- 48) Man berechne die multivariate Randdichte unter den Voraussetzungen des letzten Beispiels, wenn eine Stichprobe $D = (X_1, \dots, X_n)$ vorliegt.