8.Übung Maß- und Wahrscheinlichkeitstheorie 2 WS2012

1. Die geometrische Verteilung $\mathbb{P}(X=x)=pq^x, x=0,\ldots$ ist (als Spezialfall der negativen Exponentialverteilung) unendlich teilbar. Zeigen Sie mithilfe der Taylorentwicklung für $\log(1+x)$, dass für das zugehörige Lévy-Maß μ gilt

$$\mu(\{n\}) = q^n/n.$$

- 2. Setzen Sie im vorigen Beispiel $q_n = e^{-\lambda/n}$. Wenn X_n mit Parameter q_n geometrisch verteilt ist, dann konvergiert X_n/n in Verteilung gegen eine Exponentialverteilung. Zeigen Sie, dass das Lévy-Maß μ für die Exponentialverteilung absolutstetig ist mit Dichte $e^{-\lambda x}/x$.
- 3. ϕ sei die charakteristische Funktion der Exponentialverteilung. Zeigen Sie, dass $\phi_n(t) = \phi(nt)/\phi((n-1)t)$ für $n \ge 1$ eine charakteristische Funktion ist und bestimmen Sie die zugehörige Verteilungsfunktion F_n .
- 4. Zeigen Sie: wenn eine charakteristische Funktion die Bedingung aus dem vorigen Beispiel erfüllt, dann gibt es eine Folge (X_n) von unabhängigen (nicht notwendig identisch verteilten) Zufallsvariablen, sodass S_n/n in Verteilung gegen die Verteilung mit dieser charakteristischen Funktion konvergiert.
- 5. Integrieren Sie

$$\int_0^\infty x^{\beta-1}e^{-xt}=\Gamma(\beta)t^{-\beta}, 0<\beta<1$$

nach t und setzen dann für s>0 $t=-is=e^{-i\pi/2}s$. Damit ist $\mu([x,\infty))=x^{-\alpha}, x>0$ das Lévy-Maß für eine stabile Verteilung (mit $\mu((-\infty,0))=0$). Bestimmen Sie die charakteristische Funktion dieser Verteilung (Anmerkung: damit kann man die Beschreibung der charakteristischen Funktion einer stabilen Verteilung ergänzen: für $0<\alpha<1$ gilt $\log\phi(t)=-a|t|^{\alpha}(1+i\theta \mathrm{sig}(t)\tan(\pi\alpha/2))$ mit $|\theta|\leq 1$, eine zweite Integration gibt dasselbe Ergebnis für $\alpha>1$, der Fall $\alpha=1$ ist etwas komplizierter, hier ist der Tangens durch $2\log|t|/\pi$ zu ersetzen).

6. $(X_n, n \in \mathbb{N})$ sei eine Folge von unabhängig, identisch verteilten Zufallsvariablen mit der Dichte

$$f(x) = |x|^{-3}[|x| \ge 1].$$

Zeigen Sie, dass $S_n/(n\log n)$ in Verteilung gegen eine Standardnormalverteilung konvergiert.

7. μ sei ein endliches Maß auf $((1,\infty),\mathfrak{B})$ mit

$$\mu(cA) \le \mu(A)$$

für alle $c \geq 1$. Zeigen Sie, dass μ absolutstetig ist und dass für $f = \frac{d\mu}{d\lambda}$ gilt, dass xf(x) monoton nichtwachsend ist. (zeigen Sie zuerst $\mu((e^{n/m}, e^{(n+1)/m}]) \leq \mu((1,e])/m$ für $n \geq m$.