MASS- & WAHRSCHEINLICHKEITSTHEORIE II

http://www.statistik.tuwien.ac.at/lv-guide

WS 2014

ÜBUNGSBLATT 3

- 15) (MOMENTENPROBLEM) Die stochastische Größe X ist logarithmisch standardnormalverteilt, d.h. $X = \exp(Y)$ und $Y \sim N(0, 1)$.
 - a) Die Verteilung von nY für $n\in\mathbb{N}$ entspricht der Faltung von n^2 Standardnormalverteilungen. Damit zeige man, dass

$$\mathbb{E}X^n = \exp(\frac{n^2}{2}) .$$

b) Für jedes $\alpha \in [-1,1]$ besitzt die Verteilung mit der Dichte auf \mathbb{R}^+

$$f_{\alpha}(x) = f(x)(1 + \alpha \sin(2\pi \log(x)))$$

dieselben Momente wie X, wobei f(.) die Dichte von X bezeichnet.

Was kann man über die Momenterzeugende Funktion von X aussagen?

- 16) Man berechne die charakteristische Funktion von $U \sim U_{-1,1}$ und zeige, dass es keine unabhängig, identisch verteilten X, Y mit $X Y \sim U_{-1,1}$ gibt.
- 17) Man bestimme die zur charakteristischen Funktion $\varphi(t) := e^{-|t|}$ gehörige Dichte.
- 18) Es kann keine Zufallsgröße X geben, sodass die zugehörige charakteristische Funktion φ die Gestalt

$$\varphi(t) = \exp(-|t|^{\alpha})$$

hat, wenn $\alpha > 2$.

HINWEIS: Man betrachte das zweite Moment.

- 19) Für unabhängige und identisch verteilte Stochastische Größen X_1, X_2 mit $X_i \sim Ex_\tau, i = 1, 2$, soll die Verteilung und die charakteristische Funktion von $X_1 X_2$ bestimmt werden.
- 20) Man bestimme die charakteristische Funktion φ der Standardnormalverteilung dadurch, dass für φ die Differentialgleichung

$$\frac{d\varphi}{dt} = -t \varphi$$

gezeigt wird.

21) Für eine Cauchy-Verteilung C_{λ} , $\lambda > 0$ mit der Dichte

$$f(x) = \frac{\lambda}{\pi(\lambda^2 + x^2)}$$

bestimme man die charakteristische Funktion und zeige, dass die Cauchy-Verteilung gegenüber Faltung abgeschlossen ist, $C_{\lambda} * C_{\tau} = C_{\lambda + \tau}$. Welche Verteilung besitzt das arithmetische Mittel

$$\overline{X}_n := \frac{1}{n} \sum_{i=1}^n X_i$$

für unabhängige und identisch Cauchy-verteilte Stochastische Größen $X_i \sim C_{\lambda}$? Hinweis: Man beachte die Resultate von Beispiel 17) bzw. 19).