MASS- & WAHRSCHEINLICHKEITSTHEORIE II

http://www.statistik.tuwien.ac.at/lv-guide

WS 2014

ÜBUNGSBLATT 9

57) Die Zufallsvariablen X und Y seien unabhängig. Dann ist X+Y genau dann integrierbar, wenn beide Variablen X und Y integrierbar sind.

Hinweis: Man betrachte für beliebiges c>0 die Zufallsvariable $|X|\mathbbm{1}_{|Y|\leq c}$ bzw. deren Erwartung.

58) Man suche eine Funktionenfolge (f_n) auf einem endlichen Maßraum $(\Omega, \mathfrak{S}, \mu)$, sodass zu jedem $\varepsilon > 0$ ein $\delta > 0$ existiert, für das gilt

$$\mu(A) \le \delta \implies \int_{A} |f_n| \, d\mu < \varepsilon$$

aber $\sup_n \int |f_n| \, d\mu = \infty$, und ebenso eine Folge mit $\sup_n \int |f_n| \, d\mu < \infty$, die die obige $\varepsilon - \delta$ -Bedingung nicht erfüllt.

- **59)** Man suche eine Funktionenfolge (f_n) auf einem endlichen Maßraum $(\Omega, \mathfrak{S}, \mu)$, die gleichmäßig integrierbar ist, zu der es aber keine integrierbare Funktion g mit $g \geq |f_n|$ μ -fü $\forall n \in \mathbb{N}$ gibt.
- **60)** Sind \mathcal{F}, \mathcal{G} Familien mesbarer Funktionen auf einem Maßraum $(\Omega, \mathfrak{S}, \mu)$, so zeige man:
 - a) $\mathcal{F} \subseteq \mathcal{L}_1 \wedge |\mathcal{F}| < \infty \Rightarrow \mathcal{F}$ ist gleichmäßig integrierbar,
 - b) \mathcal{G} ist gleichmäßig integrierbar, wenn \mathcal{F} gleichmäßig integrierbar ist und $\forall g \in \mathcal{G} \quad \exists f \in \mathcal{F}: |g| \leq |f| \quad \mu$ -fü,
 - c) sind \mathcal{F} , \mathcal{G} gleichmäßig integrierbar, so ist $\{f \lor g, f \pm g: f \in \mathcal{F}, g \in \mathcal{G}\}$ auch gleichmäßig integrierbar.
- 61) Die monoton wachsende Funktion $g: \mathbb{R}^+ \to \mathbb{R}^+$ erfüllt $\lim_{x \to \infty} \frac{g(x)}{x} = \infty$. Wenn eine Folge von Zufallsvariablen X_n

$$\sup_{n} \mathbb{E} g(|X_n|) < \infty$$

erfüllt, dann ist X_n gleichgradig integrierbar.

62) Für die bivariate Normalverteilung $(X,Y) \sim N(\mu_1, \mu_2, \sigma_1^2, \sigma_2^2, \rho)$ (vgl. Beispiel 5) bestimme man die bedingte Erwartung $\mathbb{E}[X|Y]$.

Hinweis: Man bestimme zunächst die bedingte Erwartung für standardisierte Größen $(X,Y) \sim N((0,0,1,1,\rho)$.

63) Für die Zufallsvariablen X, Y mit der Dichte $f(x,y) := \frac{1}{x} \mathbb{1}_{[0,1]}(x) \mathbb{1}_{[0,x]}(y)$ berechne man die bedingten Dichten $f_{X|Y}$, $f_{Y|X}$ und $\mathbb{E}(X|Y)$, $\mathbb{E}(Y|X)$.