4. Übung aus Maß- und Wahrscheinlichkeitstheorie WS 2015

- 1. Man zeige, dass das Null-Eins-Gesetz von Hewitt-Savage i.A. nicht gilt, wenn die Zufallsvariablen zwar unabhängig aber nicht identisch verteilt sind.
- 2. Für eine Folge (X_n) unabhängig, identisch verteilter Zufallsvariabler beweise man, dass mit $S_n:=\sum\limits_{i=1}^n X_i$ gilt $P\left(\limsup\limits_n [S_n=0]\right)\in\{0,1\}$ und $\limsup\limits_n S_n=c$ P-fs. mit $c\in\overline{\mathbb{R}}$.
- 3. X_1, X_2, X_3 seien unabhängig und identisch verteilt nach $U_{0,1}$. Man bestimme die Verteilung von $X_1 + X_2 + X_3$.
- 4. X_1, \ldots, X_n seien n unabhängige nach Ex_τ verteilte Zufallsvariable.
 - (a) Man bestimme die Dichte von $S_n := X_1 + \ldots + X_n$.
 - (b) Man berechne $P(S_n > t)$.
 - (c) Eine Maschine enthält einen Verschleißteil, dessen Lebensdauer Ex_{τ} verteilt ist. Der Teil wird bei einem Ausfall sofort ersetzt. Wie groß ist die Wahrscheinlichkeit dass der Teil in der Zeitspanne t genau n-mal ersetzt werden muss?

Hinweis: Suchen Sie eine Rekursionsformel für $P(S_n > t)$, und beachten Sie, dass gilt $[S_{n+1} > t] = [N_t \le n]$, wenn N_t die Anzahl der Ausfälle im Zeitintervall [0,t] ist.

5. Man zeige, dass für unabhängige Zufallsvariable X,Y mit den Verteilungsfunktionen F,G aus $F(x-\varepsilon) < F(x+\varepsilon) \wedge G(y-\varepsilon) < G(y+\varepsilon)$ für alle $\varepsilon>0$ für die Verteilungsfunktion H ihrer Summe X+Y folgt

$$H(x+y-\varepsilon) < H(x+y+\varepsilon) \quad \forall \ \varepsilon > 0.$$
 (1)

Weiters zeige man

$$F_{-}(x) < F(x) \land G_{-}(y) < G(y) \implies H_{-}(x+y) < H(x+y)$$
. (2)

6. Man zeige, dass für unabhängige Zufallsvariable X, Y mit den Verteilungsfunktionen F, G die Summe S:=X+Y eine stetige Verteilungsfunktion H besitzt, wenn F oder G stetig ist, und dass aus $PX^{-1} \ll \lambda$ oder $PY^{-1} \ll \lambda$ folgt $PS^{-1} \ll \lambda$.

7. Man bestimme die Faltungsdichte von zwei unabhängigen Cauchyverteilten Zufallsvariablen X_1 , X_2 . Damit berechne man die Verteilung von $\overline{X}_{2^n}:=\frac{1}{2^n}\sum_{i=1}^{2^n}X_i$, wenn die X_i unabhängig, Cauchy-verteilt sind. Hinweis: $\frac{1}{1+(s-t)^2}\frac{1}{1+t^2}=\frac{1}{s^4+4\,s^2}\left[\frac{s^2}{1+(s-t)^2}+\frac{2\,s\,(s-t)}{1+(s-t)^2}+\frac{s^2}{1+t^2}+\frac{2\,s\,t}{1+t^2}\right],$ und integrieren Sie zunächst über $[-x\,,x]$ mit $x\to\infty$.