Ausgewählte Kapitel der WAHRSCHEINLICHKEITSTHEORIE

http://www.statistik.tuwien.ac.at/lv-guide

VO: Prof. Felsenstein

SS 2013

ÜBUNGSBLATT 4

19) Die Stichprobe Y_i mit Verteilung $Y_i \sim F$ und der davon unabhängige Poissonprozess N_t bilden den Compound Poissonprocess X(t). Y habe dieselbe Verteilung $Y \sim F$ und sei von allen Y_i und N_t unabhängig. Man zeige für beliebiges (integrierbares) H die Compound Poisson Identity

$$\mathbb{E}[X(t)H(X(t))] = \lambda t \mathbb{E}[YH(X(t) + Y)].$$

HINWEIS: Man fasse Y als Realisierung Y_{n+1} auf und betrachte die bedingten Erwartungen unter $N_t = n + 1$.

20) Unter den Voraussetzungen des letzten Beispiels können die Momente des Compound-Poisson Prozesses rekursiv bestimmt werden:

$$\mathbb{E}(X(t)^n) = \lambda t \sum_{k=0}^{n-1} \binom{n-1}{k} \mathbb{E}(X(t)^k) \mathbb{E}(Y^{n-k}) .$$

Mit dieser Darstellung berechne man die ersten drei Momente und die Varianz von X(t).

- 21) Die Kovarianzfunktion $\eta_Z(t,s) = \text{cov}(s,t)$ des Prozesses Z_t soll für einen Poissonprozess $Z_t = N_t$ mit Rate λ bzw. auch für einen Compound Poissonprocess X(t) mit einer geometrisch verteilten Stichprobe $Y_i \sim G_\theta$ bestimmt werden.
- 22) Der Prozeß N_t sei ein conditional Poissonprocess mit eine Exponentialverteilten Rate $\lambda \sim Ex_{\theta}$. Man bestimme die Verteilung von N_t und $\mathbb{E}N_t$. Sind die Zuwächse von N_t stationär bzw. sind die unabhängig?
- 23) Die Zwischenankunftszeiten T_i stammen von N_t , dem conditional Poissonprocess des letzten Beispiels. Man bestimme die Verteilung von T_i für i=1,2. Sind die Folge T_i identisch verteilt bzw. unabhängig? Welche Momente besitzen T_i ?
- 24) Symmetrische Irrfahrt Die alternativ-verteilten stochastischen Größen $(X_i)_{i\geq 1}$ mit

$$P[X_i = -1] = P[X_i = 1] = \frac{1}{2}$$

seien unabhängig, dann gilt für die Summe $S_n = \sum_{i=1}^n X_i$

$$\mathbf{P}[\limsup_{n} |S_n| = \infty] = 1.$$