1. Übung Ausgewählte Kapitel SS14

- 1. Zeigen Sie, dass aus der punktweisen Konvergenz von e^{ia_nt} die Konvergenz von a_n folgt.
- 2. Zeigen Sie: wenn die Folgen (X_n) und (X_n+a_n) in Verteilung konvergieren, dann ist (a_n) konvergent.
- 3. Zeigen Sie: wenn (X_n) in Verteilung gegen einen nichttrivialen Grenzwert konvergiert und $(a_n X_n)$ mit $a_n \geq 0$ ebenfalls in Verteilung konvergiert, dann konvergiert (a_n) .
- 4. Bestimmen Sie das Lévy-Maß für die Exponentialverteilung.
- 5. Zeigen Sie, dass eine Mischung von geometrischen Verteilungen (d.h. $\mathbb{P}(X=n)=\sum_{j=1}^n \alpha_j(1-p_j)p_j^n, \sum \alpha_j=1, \alpha_j\geq 0, 0\leq p_1<\ldots< p_k<1$)unendlich teilbar ist. (zeigen Sie, dass die charakteristische Funktion die Form

$$\phi(t) = \frac{\prod_{j=1}^{k-1} \frac{1 - \theta_j e^{it}}{1 - \theta_j}}{\prod_{j=1}^{k} \frac{1 - p_j e^{it}}{1 - p_j}}$$

mit $p_i < \theta_i < p_{i+1}$ hat).

- 6. Das Maximum M_n von n unabhängig exponentialverteilten Zufallsvariablen mit Parameter 1 hat dieselbe Verteilung wie die Summe $Y_1 + \ldots + Y_n$ mit unabhängigen Y_j , wobei Y_j mit Parameter j exponentialverteilt ist. Bestimmen Sie die Grenzverteilung von $M_n \log n$ für $n \to \infty$ (die ist dann auch unendlich teilbar).
- 7. Zeigen Sie, dass die Verteilungsfunktion

$$F(x) = 1 - (x+1)^{-c} x > 0$$

unendlich teilbar ist (stellen Sie die Dichte als Mischung von Exponentialdichten dar).

8. (X_n) sei eine Folge von unabhängigen Zufallsvariablen mit $\mathbb{P}(X_n=k!^2)=1/k!)$ $k\geq 2$, $\mathbb{P}(X_n=0)=3-e$. Zeigen Sie dass $S_{n!}/n!^2$ gegen eine Poissonverteilung konvergiert (mit einer Modifikation dieser Idee kann jede unendlich teilbare Verteilung als Grenzverteilung einer skalierten Teilfolge der Partialsummen von i.i.d. Zufallsvariablen erhalten werden).

1