2. Übung aus Informations- und Codierungstheorie SS 2016

1. Man zeige, dass für jede Wahrscheinlichkeitsverteilung $P=(p_1,\ldots,p_m)$ mit $p_1\leq\ldots\leq p_m$ gilt

$$H^*(P) \le \sum_{i=1}^m i \, p_i - p_m. \tag{1}$$

2. Man zeige, dass für nichtnegative Zahlen $a_i, b_i, 1 \le i \le m$ stets gilt

$$\sum_{i=1}^{m} a_i \log \frac{a_i}{b_i} \ge \left(\sum_{i=1}^{m} a_i\right) \log \left(\frac{\sum\limits_{i=1}^{m} a_i}{\sum\limits_{i=1}^{m} b_i}\right),\tag{2}$$

wobei Gleichheit genau dann gilt, wenn $\frac{b_i}{a_i} = c \quad \forall \ 1 \leq i \leq m$.

- 3. Man zeige, dass für alle $\epsilon>0$ eine Verteilung P_ϵ existiert, sodass die mittlere Wortlänge des optimalen Codes größer als $H(P_\epsilon)+1-\epsilon$ ist.
- 4. Sind $P=(p_1,\ldots,p_m)$ und $Q=(q_1,\ldots,q_m)$ 2 Wahrscheinlichkeitsverteilungen, für die gilt $q_1\geq\ldots\geq q_m$ und $\sum\limits_{i=1}^k p_i\geq\sum\limits_{i=1}^k q_i$ für alle $k=1,\ldots,m,$ so zeige , dass gilt: $H(P)\leq H(Q).$ Interpretieren Sie dieses Ergebnis. Hinweis: Da $f_i:=-\log q_i$ monoton steigt, kann man f_i durch eine Summe von Differenzen $d_1:=f_1,\ d_i:=f_i-f_{i-1}$ darstellen.
- 5. Aus einer Urne mit 2 verschiedenen Arten von Kugeln werden n Kugeln gezogen. Sei $X:=(X_1,\ldots,X_n)$ das Ergebnis der n Ziehungen, wenn mit Zurücklegen gezogen wird, und sei $Y:=(Y_1,\ldots,Y_n)$ das Ergebnis bei Ziehungen ohne Zurücklegen. Man zeige: $H(Y) \leq H(X)$.